656 research outputs found

    Effects of hydrostatic pressure on the mechanical behavior of body centered cubic refractory metals and alloys

    Get PDF
    Hydrostatic pressure on mechanical behavior of body centered cubic refractory metals and alloy

    Effects of hydrostatic pressure on the mechanical behavior of body centered cubic refractory metals and alloys Interim technical report

    Get PDF
    Effects of hydrostatic pressure on mechanical behavior of body centered cubic refractory metals and alloy

    Effects of hydrostatic pressure on the mechanical behavior of body centered cubic refractory metals and alloys Interim technical report no. 3

    Get PDF
    Effects of hydrostatic pressure on mechanical properties of tungsten, tungsten-thorium alloys, and iron-carbon alloy

    Two-photon excitation and relaxation of the 3d-4d resonance in atomic Kr

    Get PDF
    Two-photon excitation of a single-photon forbidden Auger resonance has been observed and investigated using the intense extreme ultraviolet radiation from the free electron laser in Hamburg. At the wavelength 26.9 nm (46 eV) two photons promoted a 3d core electron to the outer 4d shell. The subsequent Auger decay, as well as several nonlinear above threshold ionization processes, were studied by electron spectroscopy. The experimental data are in excellent agreement with theoretical predictions and analysis of the underlying multiphoton processes

    Critical behavior of thermopower and conductivity at the metal-insulator transition in high-mobility Si-MOSFET's

    Get PDF
    This letter reports thermopower and conductivity measurements through the metal-insulator transition for 2-dimensional electron gases in high mobility Si-MOSFET's. At low temperatures both thermopower and conductivity show critical behavior as a function of electron density which is very similar to that expected for an Anderson transition. In particular, when approaching the critical density from the metallic side the diffusion thermopower appears to diverge and the conductivity vanishes. On the insulating side the thermopower shows an upturn with decreasing temperature.Comment: 4 pages with 3 figure

    Geometric approach to nonlinear coherent states using the Higgs model for harmonic oscillator

    Get PDF
    In this paper, we investigate the relation between the curvature of the physical space and the deformation function of the deformed oscillator algebra using non-linear coherent states approach. For this purpose, we study two-dimensional harmonic oscillators on the flat surface and on a sphere by applying the Higgs modell. With the use of their algebras, we show that the two-dimensional oscillator algebra on a surface can be considered as a deformed one-dimensional oscillator algebra where the effect of the curvature of the surface is appeared as a deformation function. We also show that the curvature of the physical space plays the role of deformation parameter. Then we construct the associated coherent states on the flat surface and on a sphere and compare their quantum statistical properties, including quadrature squeezing and antibunching effect.Comment: 12 pages, 7 figs. To be appeared in J. Phys.

    On the semiclassical treatment of anharmonic quantum oscillators via coherent states - The Toda chain revisited

    Full text link
    We use coherent states as a time-dependent variational ansatz for a semiclassical treatment of the dynamics of anharmonic quantum oscillators. In this approach the square variance of the Hamiltonian within coherent states is of particular interest. This quantity turns out to have natural interpretation with respect to time-dependent solutions of the semiclassical equations of motion. Moreover, our approach allows for an estimate of the decoherence time of a classical object due to quantum fluctuations. We illustrate our findings at the example of the Toda chain.Comment: 12 pages, some remarks added. Version to be published in J. Phys. A: Math. Ge

    Algebraic analysis of a model of two-dimensional gravity

    Full text link
    An algebraic analysis of the Hamiltonian formulation of the model two-dimensional gravity is performed. The crucial fact is an exact coincidence of the Poisson brackets algebra of the secondary constraints of this Hamiltonian formulation with the SO(2,1)-algebra. The eigenvectors of the canonical Hamiltonian HcH_{c} are obtained and explicitly written in closed form.Comment: 21 pages, to appear in General Relativity and Gravitatio

    Monge Distance between Quantum States

    Get PDF
    We define a metric in the space of quantum states taking the Monge distance between corresponding Husimi distributions (Q--functions). This quantity fulfills the axioms of a metric and satisfies the following semiclassical property: the distance between two coherent states is equal to the Euclidean distance between corresponding points in the classical phase space. We compute analytically distances between certain states (coherent, squeezed, Fock and thermal) and discuss a scheme for numerical computation of Monge distance for two arbitrary quantum states.Comment: 9 pages in LaTex - RevTex + 2 figures in ps. submitted to Phys. Rev.
    corecore