29 research outputs found

    Elasticity and viscosity of ice measured in the experiment on wave propagation below the ice in HSVA ice tank

    Get PDF
    An experiment on the propagation of flexural-gravity waves was performed in the HSVA ice tank in 2018. Physical characteristics of the water-ice system were measured in different locations in the tank during the tests, with several sensors deployed in the water, on the ice and in the air. Periodical waves with frequencies of 0.5-1.5 Hz were generated by HSVA wave maker during 10 min in each test. The phase speeds and wave damping associated with anelastic deformations of ice were analyzed in the paper. Elastic modulus of ice was calculated for each wave period from the dispersion equation of flexural gravity waves where measured values of wave frequencies and wave speeds were substituted. Viscous coefficient of ice was calculated after the analysis of wave damping. Obtained values have relatively big dispersion which can be explained by natural variability of ice properties

    Laboratory Investigations of the Bending Rheology of Floating Saline Ice and Physical Mechanisms of Wave Damping In the HSVA Hamburg Ship Model Basin Ice Tank

    Get PDF
    An experimental investigation of flexural-gravity waves was performed in the Hamburg Ship Model Basin HSVA ice tank. Physical characteristics of the water-ice system were measured in several locations of the tank with a few sensors deployed in the water and on the ice during the tests. The three-dimensional motion of ice was measured with the optical system Qualisys; water pressure was measured by several pressure sensors mounted on the tank wall, in-plane deformations of the ice and the temperatures of the ice and water were measured by fiber optic sensors; and acoustic emissions were recorded with compressional crystal sensors. The experimental setup and selected results of the tests are discussed in this paper. Viscous-elastic model (Burgers material) is adopted to describe the dispersion and attenuation of waves propagating below the ice. The elastic modulus and the coefficient of viscosity are calculated using the experimental data. The results of the measurements demonstrated the dependence of wave characteristics from the variability of ice properties during the experiment caused by the brine drainage. We showed that the cyclic motion of the ice along the tank, imitating ice drift, and the generation of under ice turbulence cause an increase of wave damping. Recorded acoustic emissions demonstrated cyclic microcracking occurring with wave frequencies and accompanying bending deformations of the ice. This explains the viscous and anelastic rheology of the model ice

    Experimental evidence for a universal threshold characterizing wave-induced sea ice break-up

    Get PDF
    Waves can drastically transform a sea ice cover by inducing break-up over vast distances in the course of a few hours. However, relatively few detailed studies have described this phenomenon in a quantitative manner, and the process of sea ice break-up by waves needs to be further parameterized and verified before it can be reliably included in forecasting models. In the present work, we discuss sea ice break-up parameterization and demonstrate the existence of an observational threshold separating breaking and non-breaking cases. This threshold is based on information from two recent field campaigns, supplemented with existing observations of sea ice break-up. The data used cover a wide range of scales, from laboratory-grown sea ice to polar field observations. Remarkably, we show that both field and laboratory observations tend to converge to a single quantitative threshold at which the wave-induced sea ice break-up takes place, which opens a promising avenue for robust parametrization in operational forecasting models.Comment: 18 pages, 8 figures, 1 tabl

    A Regulated Sensing Solution based on a Self-Reference Principle for PCM+OTS Memory Array

    No full text
    International audiencePhase change memory (PCM) device associated with Ovonic Threshold Switch (OTS) selector is a proven solution to fill the gap between DRAM and mass storage. This technology also has the potential to be embedded in a high-end microcontroller. However, programming and reading phases efficiency is directly linked to the selector's leakage current and the sneak-path management. To tackle this challenge, we propose in this paper, a new sense amplifier able to generate an auto-reference taking into account leakage current of unselected cells, including a regulation loop to compensate voltage drop due to reading current sensing. This auto-referenced sense, built on the chargesharing principle, is designed on a 28nm FDSOI technology and validated through extensive Monte-Carlo and corner cases simulations. Layout and postlayout simulation results are also provided. From the simulation results, our sense amplifier is demonstrated to be robust for an ultra-large range of sneak-path current and consequently for a large range of memory array size, suitable for embedded memory in high-end microcontroller

    Iron chelation efficiency of deferasirox (Exjade (R), ICL670) in patients with transfusional hemosiderosis

    No full text
    Iron excretion can be calculated according to Angelucci et al (NEJM 2000). As applied to the novel oral iron chelator deferasirox (DSX), chelation efficiency can then be determined as the % iron excretion vs theoretical iron binding capacity of chelator dose: % efficiency = [iron excretion (mg/kg/day)/chelator dose (mg/kg/day)] x [374/56] x 2 x 100 (374 and 56 represent the molecular weights of DSX and iron; factor 2 accounts for the tridentate ligand). In a total of 325 patients with ß-thalassemia (n=285) or rare anemias, such as MDS (n=13), DBA (n=14) or other anemias (n=13), included in the DSX Phase II and III Studies 0108 and 0107, liver iron concentration (LIC) was evaluated by liver biopsy at baseline and study end. All patients were treated with once-daily oral DSX 5, 10, 20 or 30 mg/kg according to baseline LIC (2-3, >3-7, >7-14 and >14 mg Fe/g dw, respectively). In these patients, the average dose during study was 22.8 ± 7.6 mg/kg. The average iron intake was 0.37 mg/kg/day and was similar between dose cohorts

    Studies of general relativity with quantum sensors

    No full text
    We present two projects aiming to probe key aspects of the theory of General Relativity with high-precision quantum sensors. These projects use cold-atom interferometry with the aim of measuring gravitational waves and testing the equivalence principle. To detect gravitational waves, a large multi-sensor demonstrator is currently under construction that will exploit correlations between three atom interferometers spread along a 200 m optical cavity. Similarly, a test of the weak equivalence principle is currently underway using a compact and mobile dual-species interferometer, which will serve as a prototype for future high-precision tests onboard an orbiting satellite. We present recent results and improvements related to both projects

    Studies of general relativity with quantum sensors

    No full text
    We present two projects aiming to probe key aspects of the theory of General Relativity with high-precision quantum sensors. These projects use cold-atom interferometry with the aim of measuring gravitational waves and testing the equivalence principle. To detect gravitational waves, a large multi-sensor demonstrator is currently under construction that will exploit correlations between three atom interferometers spread along a 200 m optical cavity. Similarly, a test of the weak equivalence principle is currently underway using a compact and mobile dual-species interferometer, which will serve as a prototype for future high-precision tests onboard an orbiting satellite. We present recent results and improvements related to both projects
    corecore