5 research outputs found
Gravure en plasma dense fluorocarboné de matériaux organosiliciés à faible constante diélectrique (SiOCH, SiOCH poreux). Etude d'un procédé de polarisation pulsée.
In microelectronics, the performance of integrated circuit is limited by increasing interconnections delays. One solution is to replace the standard interlevel dielectric (SiO2) by a low dielectric constant material (low-k). This study deals with low-k SiOCH and porous SiOCH etching, as well as SiO2 and SiCH etching used as hard mask or etch stop layer. The aim is to obtain a high etch rate for porous SiOCH with a high selectivity versus SiCH and SiO2. Moreover, the etch step should not alter the low-k, and modify its dielectric constant. Then, etching of features has to be anisotropic. To reach these goals, a better etching control and a better etching mechanisms understanding is required. Etch is performed in an inductively coupled reactor using fluorocarbon gases (CHF3, CHF3/Ar, CHF3/H2), where the substrate is negatively biased. This etching process has been modified : the bias voltage, and so the ion energy, is pulsed. The influence of pulsed conditions, frequency and duty cycle (TON/T), is studied. Indeed, by decreasing the duty cycle, this process provides excellent results concerning porous SiOCH selectivity with respect to SiCH or SiO2. To understand etch mechanisms of Si, SiCH, SiO2, SiOCH, and porous SiOCH in continuous and pulsed modes, material analyses (XPS, spectroscopic ellipsometry, SEM) are coupled to plasma analyses (mass spectrometry, optical emission spectroscopy, Langmuir and planar probes). In particular, the development of the planar probe diagnostic has been part of my work. It enables an accurate measurement of the ion flux towards the substrate. Ion fluxes are then successfully measured in real time in polymerising, electronegative, and unstable plasmas. Comparing those different diagnostics, we conclude that etch mechanisms in pulsed mode are similar to those in continuous mode. However, the etching process is different. To understand that, a model describing etch rates when a pulsed bias voltage is applied has been developed. In summary, when no bias voltage is applied (phase OFF), a fluorocarbon film is deposited onto material surfaces. Then, when a bias is applied (phase ON), a higher ion energy than in continuous mode is needed to etch this film and hence to etch the material. Moreover, with a pulsed bias voltage, materials are etched through a fluorine rich fluorocarbon film. Thereby, the model clarifies the pulsed etching process and is useful to understand etch rates evolution with a pulsed bias voltage.En micro-électronique, la performance des circuits intégrés est limitée par l'augmentation des délais d'interconnexions. Une solution est de remplacer le diélectrique d'interniveaux conventionnel (SiO2) par un matériau à plus faible constante diélectrique (low-k). Cette étude concerne la gravure de matériaux low-k SiOCH et SiOCH poreux, et la gravure de la couche barrière SiCH et du masque dur SiO2. La sélectivité de gravure des low-k par rapport à SiCH et SiO2 est un critère important à obtenir. De plus, l'étape de gravure ne doit pas modifier considérablement la constante diélectrique du matériau. Enfin, la gravure de motifs doit être anisotrope. Pour atteindre ces objectifs, un meilleur contrôle du procédé de gravure et une meilleure compréhension des mécanismes de gravure sont souhaités. La gravure des matériaux est réalisée en plasma fluorocarboné (CHF3) additionné ou non de H2 ou Ar, dans un réacteur à couplage inductif (ICP), dans lequel le substrat est polarisé négativement. Ce procédé a été modifié en appliquant une polarisation pulsée au substrat (1 Hz à 10 kHz). Dans cette configuration, l'énergie des ions est pulsée. L'influence des conditions de pulse (fréquence, et rapport cyclique rc=TON/T) sur la gravure des matériaux SiOCH poreux, SiOCH, SiCH, SiO2, et Si est étudiée. En particulier, en diminuant le rapport cyclique, ce procédé pulsé fournit d'excellents résultats concernant la gravure sélective de SiOCH poreux vis à vis de SiCH et SiO2. Pour optimiser le procédé de gravure, une meilleure compréhension de l'interaction plasma-surface, et par suite des mécanismes de gravure, est indispensable. Pour cela, des analyses de surface (XPS, ellipsométrie spectroscopique, MEB) sont corrélées à des analyses du plasma (spectrométrie de masse, spectroscopie d'émission optique, sonde de Langmuir, sonde plane). En particulier, durant cette thèse, le diagnostic de sonde plane a été développé. Il permet une mesure précise du flux d'ions, qui peut alors être mesuré en temps réel en plasma polymérisant, électronégatif et instable. En comparant ces différents diagnostics, nous concluons que les mécanismes de gravure en polarisation pulsée sont similaires à ceux en polarisation continue. Toutefois, le procédé de gravure diffère. Aussi, pour comprendre ce procédé, un modèle décrivant les vitesses de gravure en fonction de la tension de polarisation a été développé. En résumé, lorsque aucune tension n'est appliquée (phase OFF), un film fluorocarboné se dépose à la surface des matériaux. Puis, à l'application d'une tension (phase ON), une énergie des ions supérieure à celle obtenue en polarisation continue est nécessaire pour graver ce dépôt puis graver le matériau. De plus, la gravure du matériau en polarisation pulsée s'opère à travers un film fluorocarboné plus riche en fluor par rapport au mode continu : La gravure des matériaux en est améliorée. Le modèle, tenant compte de cet état de surface, décrit alors correctement les seuils et vitesses de gravure des différents matériaux en polarisation pulsée
Gravure en plasma dense fluorocarboné de matériaux organosiliciés à faible constante diélectrique (SiOCH, SiOCH poreux). Etude d'un procédé de polarisation pulsée.
In microelectronics, the performance of integrated circuit is limited by increasing interconnections delays. One solution is to replace the standard interlevel dielectric (SiO2) by a low dielectric constant material (low-k). This study deals with low-k SiOCH and porous SiOCH etching, as well as SiO2 and SiCH etching used as hard mask or etch stop layer. The aim is to obtain a high etch rate for porous SiOCH with a high selectivity versus SiCH and SiO2. Moreover, the etch step should not alter the low-k, and modify its dielectric constant. Then, etching of features has to be anisotropic. To reach these goals, a better etching control and a better etching mechanisms understanding is required. Etch is performed in an inductively coupled reactor using fluorocarbon gases (CHF3, CHF3/Ar, CHF3/H2), where the substrate is negatively biased. This etching process has been modified : the bias voltage, and so the ion energy, is pulsed. The influence of pulsed conditions, frequency and duty cycle (TON/T), is studied. Indeed, by decreasing the duty cycle, this process provides excellent results concerning porous SiOCH selectivity with respect to SiCH or SiO2. To understand etch mechanisms of Si, SiCH, SiO2, SiOCH, and porous SiOCH in continuous and pulsed modes, material analyses (XPS, spectroscopic ellipsometry, SEM) are coupled to plasma analyses (mass spectrometry, optical emission spectroscopy, Langmuir and planar probes). In particular, the development of the planar probe diagnostic has been part of my work. It enables an accurate measurement of the ion flux towards the substrate. Ion fluxes are then successfully measured in real time in polymerising, electronegative, and unstable plasmas. Comparing those different diagnostics, we conclude that etch mechanisms in pulsed mode are similar to those in continuous mode. However, the etching process is different. To understand that, a model describing etch rates when a pulsed bias voltage is applied has been developed. In summary, when no bias voltage is applied (phase OFF), a fluorocarbon film is deposited onto material surfaces. Then, when a bias is applied (phase ON), a higher ion energy than in continuous mode is needed to etch this film and hence to etch the material. Moreover, with a pulsed bias voltage, materials are etched through a fluorine rich fluorocarbon film. Thereby, the model clarifies the pulsed etching process and is useful to understand etch rates evolution with a pulsed bias voltage.En micro-électronique, la performance des circuits intégrés est limitée par l'augmentation des délais d'interconnexions. Une solution est de remplacer le diélectrique d'interniveaux conventionnel (SiO2) par un matériau à plus faible constante diélectrique (low-k). Cette étude concerne la gravure de matériaux low-k SiOCH et SiOCH poreux, et la gravure de la couche barrière SiCH et du masque dur SiO2. La sélectivité de gravure des low-k par rapport à SiCH et SiO2 est un critère important à obtenir. De plus, l'étape de gravure ne doit pas modifier considérablement la constante diélectrique du matériau. Enfin, la gravure de motifs doit être anisotrope. Pour atteindre ces objectifs, un meilleur contrôle du procédé de gravure et une meilleure compréhension des mécanismes de gravure sont souhaités. La gravure des matériaux est réalisée en plasma fluorocarboné (CHF3) additionné ou non de H2 ou Ar, dans un réacteur à couplage inductif (ICP), dans lequel le substrat est polarisé négativement. Ce procédé a été modifié en appliquant une polarisation pulsée au substrat (1 Hz à 10 kHz). Dans cette configuration, l'énergie des ions est pulsée. L'influence des conditions de pulse (fréquence, et rapport cyclique rc=TON/T) sur la gravure des matériaux SiOCH poreux, SiOCH, SiCH, SiO2, et Si est étudiée. En particulier, en diminuant le rapport cyclique, ce procédé pulsé fournit d'excellents résultats concernant la gravure sélective de SiOCH poreux vis à vis de SiCH et SiO2. Pour optimiser le procédé de gravure, une meilleure compréhension de l'interaction plasma-surface, et par suite des mécanismes de gravure, est indispensable. Pour cela, des analyses de surface (XPS, ellipsométrie spectroscopique, MEB) sont corrélées à des analyses du plasma (spectrométrie de masse, spectroscopie d'émission optique, sonde de Langmuir, sonde plane). En particulier, durant cette thèse, le diagnostic de sonde plane a été développé. Il permet une mesure précise du flux d'ions, qui peut alors être mesuré en temps réel en plasma polymérisant, électronégatif et instable. En comparant ces différents diagnostics, nous concluons que les mécanismes de gravure en polarisation pulsée sont similaires à ceux en polarisation continue. Toutefois, le procédé de gravure diffère. Aussi, pour comprendre ce procédé, un modèle décrivant les vitesses de gravure en fonction de la tension de polarisation a été développé. En résumé, lorsque aucune tension n'est appliquée (phase OFF), un film fluorocarboné se dépose à la surface des matériaux. Puis, à l'application d'une tension (phase ON), une énergie des ions supérieure à celle obtenue en polarisation continue est nécessaire pour graver ce dépôt puis graver le matériau. De plus, la gravure du matériau en polarisation pulsée s'opère à travers un film fluorocarboné plus riche en fluor par rapport au mode continu : La gravure des matériaux en est améliorée. Le modèle, tenant compte de cet état de surface, décrit alors correctement les seuils et vitesses de gravure des différents matériaux en polarisation pulsée
Gravure en plasma dense fluorocarboné de matériaux organosiliciés à faible constante diélectrique (SiOCH, SiOCH poreux) (étude d'un procédé de polarisation pulsée)
L'objet de ce travail est la gravure en plasma ICP fluorocarboné de matériaux à faible constante diélectrique que sont les méthylsilsesquioxanes SiOCH et SiOCH poreux, utilisés comme isolant intermétallique dans la réalisation de circuits intégrés en microélectronique. La gravure de matériaux utilisés comme masque dur ou couche d'arrêt, SiO2, SiCH, est aussi étudiée. Une vitesse de gravure élevée pour le low- SiOCH poreux, associée à une forte sélectivité de gravure vis à vis de SiO2 et SiCH, sont recherchées. Dans cet objectif, le procédé de gravure est modifié : la tension de polarisation, et donc l'énergie des ions, est pulsée. Pour comprendre les mécanismes de gravure de Si, SiCH, SiO2, SiOCH, et SiOCH poreux en polarisation continue et pulsée, les analyses de surface (XPS, ellipsométrie) sont couplées aux analyses plasma (spectrométrie de masse, spectroscopie d'émission optique, sonde plane). Un modèle est développé pour décrire la vitesse de gravure en polarisation pulsée.This study concerns the etching of low permittivity methylsilsesquioxane materials, SiOCH and porous SiOCH, used as intermetal dielectric in microelectronics devices, with fluorocarbon inductively coupled plasma. Etching of SiO2 and SiCH, used as hard mask or etch stop layer is also studied. The aim is to obtain a high porous SiOCH etch rate with a high selectivity versus SiCH and SiO2. To reach this goal, the etching process has been modified : the bias voltage, and so the ion energy, is pulsed. This process provides excellent results concerning both etch rate and selectivity. To understand etch mechanisms of Si, SiCH, SiO2, SiOCH, and porous SiOCH in continuous and pulsed modes, surface analyses (XPS, ellipsometry) are coupled to plasma analyses (mass spectrometry, optical emission spectroscopy, planar probe). A model describing etch rates when a pulsed bias voltage is applied has been developed.NANTES-BU Sciences (441092104) / SudocSudocFranceF
Photonics integrated circuits on plasma-polymer-HDMSO/Single-mode TEOO-TMOO straight waveguides, S-Bends, Y-Junctions and Mach-Zehnder Intererometers.
International audienceThe authors present the design, realization and characterization of photonics integrated circuits made up of organosilicon (SiOx CyHz) materials called HexaMethylDiSilOxane plasma polymers (pp-HMDSO), elaborated by plasma enhanced chemical vapour deposition (PECVD). Such a versatile technique offers the noticeable advantage to allow the control of respectively; the value of the refractive indices, the thickness of each layer while entailing a lower stress, as the gas proportion of precursors (HMDSO) and plasma conditions are conveniently adjusted. The cladding and core layers of such waveguides have been elaborated into the same reactor thanks to the same precursors with relevant changes regarding the plasma parameters. Then, various integrated photonics devices have been realized, from planar and single-mode rib waveguides to more complex structures like S-bends, Y-junctions, and Mach Zehnder interferometers (MZI). Such structures prove to yield a good single-mode confinement for both polarisations. Moreover optical losses ascribed to pp-HMDSO structures have been respectively evaluated to 5.6 dB.cm1 and 11.5 dB.cm 1 for TE00 and TM00 optical modes. Hence, pp-HMDSO and PECVD appear as quite promising techniques for devising ultra-integrated components like microresonators, and many another functional device