13 research outputs found

    Geological disposal of nuclear waste: A primer

    No full text
    The back-end of the nuclear fuel cycle has become the Achilles Heel of nuclear power. After more than 50 years of effort, there are, at present, no operating nuclear waste repositories for the spent nuclear fuel from commercial nuclear power plants or for the high-level waste from the reprocessing of spent fuel. The articles in this issue of Elements describe the status of geological disposal in salt, crystalline rock, clay, and tuff, as presently developed in five countries

    Enhancing microbial iron reduction in hyperalkaline, chromium contaminated sediments by pH amendment

    No full text
    Soil collected from beneath a chromite ore processing residue (COPR) disposal site contained a diverse population of anaerobic alkaliphiles, despite receiving a continuous influx of a Cr(VI) contaminated, hyperalkaline leachate (pH 12.2). Chromium was found to have accumulated in this soil as a result of an abiotic reaction of Cr(VI) with Fe(II) present in the soil. This sediment associated Fe(II) was therefore acting as a natural reactive zone beneath the COPR and thereby preventing the spread of Cr(VI). In anaerobic microcosm experiments soil microorganisms were able to reduce nitrate at pH 11.2 coupled to the oxidation of electron donors derived from the original soil organic matter, but progressive anoxia did not develop to the point of iron reduction over a period of 9 months. It is not clear, therefore, if Fe(II) can be actively replenished by microbial processes occurring within the soil at in situ conditions. Sodium bicarbonate was added to this soil to investigate whether bioreduction of iron in hyperalkaline chromium contaminated soils could be enhanced by reducing the pH to a value optimal for many alkaliphilic bacteria. The addition of sodium bicarbonate produced a well buffered system with a pH of ~9.3 and iron reducing conditions developed within 1 month once complete denitrification had occurred. Iron(III) reduction was associated with an increase in the proportion of genetic clone libraries that were from the phylum Firmicutes, suggesting that these species are responsible for the Fe(III) reduction observed. Amendment of the pH using bicarbonate may provide a suitable strategy for stimulating the bioreduction of Fe(III) in COPR leachate contaminated soils or other environments where microbial reduction is inhibited by elevated pH

    Chromate reduction in Fe(II)-containing soil affected by hyperalkaline leachate from chromite ore processing residue

    No full text
    Highly alkaline (pH 12.2) chromate contaminated leachate (990 μmol L−1) has been entering soils below a chromite ore processing residue disposal (COPR) site for over 100 years. The soil immediately beneath the waste has a pH of 11 → 12.5, contains 0.3 → 0.5% (w/w) chromium, and 45 → 75% of the microbially available iron is Fe(II). Despite elevated pH, a viable microbial consortium of Firmicutes dominated iron reducers was isolated from this COPR affected soil. Soil pH and Cr concentration decrease with distance from the waste. XAS analysis of soil samples indicated that Cr is present as a mixed Cr(III)–Fe(III) oxy-hydroxide phase, suggesting that the elevated soil Cr content is due to reductive precipitation of Cr(VI) by Fe(II). Microcosm results demonstrate the capacity of COPR affected soil to abiotically remove all Cr(VI) from the leachate within 40 days. In air oxidation experiments less than 2% of the total Cr in the soil was remobilised despite significant Fe(II) oxidation. XAS analysis after air oxidation showed no change in Cr-speciation, indicating the Cr(III)-containing phase is a stable long term host for Cr. This work suggests that reductive precipitation of Cr(VI) is an effective method of contaminant immobilisation in soils where microbially produced Fe(II) is present

    Abiotic reduction of Cr(VI) by humic acids derived from peat and lignite: kinetics and removal mechanism

    No full text
    Hexavalent chromium contamination of groundwater is a worldwide problem caused by anthropogenic and natural processes. We report the rate of Cr(VI) removal by two humic acids (extracted from Miocene age lignite and younger peat soil) in aqueous suspensions across a pH range likely to be encountered in terrestrial environments. Cr(VI) was reduced to Cr(III) in a first order reaction with respect Cr(VI) concentration, but exhibited a partial order (~0.5) with respect to [H+]. This reaction was more rapid with the peat humic acid, where Cr(VI) reduction was observed at all pH values investigated (3.7 ≤ pH ≤ 10.5). 13C NMR and pyrolysis GC-MS spectroscopy indicate that the reaction results in loss of substituted phenolic moieties and hydroxyl groups from the humic acids. X-ray absorption spectroscopy indicated that at all pH values the resulting Cr(III) was associated with the partially degraded humic acid in an inner sphere adsorption complex. The reaction mechanism is likely to be controlled by ester formation between Cr(VI) and phenolic/hydroxyl moieties, as this initial step is rapid in acidic systems but far less favorable in alkaline conditions. Our findings highlight the potential of humic acid to reduce and remove Cr(VI) from solution in a range of environmental conditions
    corecore