3,039 research outputs found

    Sequencing-independent delocalization in a DNA-Like double chain with base pairing

    Get PDF
    The question of whether or not DNA is intrinsically conducting is still a challenge. The ongoing debate on DNA molecules as an electronic material has so far underestimated a key distinction of the system: the role of base pairing in opposition to correlations along each chain. We show that a disordered base paired double chain presents truly or, at least, effectively delocalized states. This effect is irrespective to the sequencing along each chain.951

    Recombination from polar InGaN/GaN quantum well structures at high excitation carrier densities

    Get PDF
    In this paper we report on the emergence of a high energy band at high optically excited carrier densities in the low temperature photoluminescence spectra from polar InGaN/GaN single quantum well structures. This high energy band emerges at carrier densities when the emission from the localized ground states begins to saturate. We attribute this high energy band to recombination involving higher energy less strongly localized electron and hole states that are populated once the localized ground states become saturated; this assignment is supported by the results from an atomistic tight-binding model. A particular characteristic of the recombination at the high carrier densities is that the overall forms of the photoluminescence decay curves bear great similarity to those from semiconductor quantum dots. The decay curves consist of plateaus where the photoluminescence intensity is constant with time as a result of Pauli state blocking in the high energy localized states followed by a rapid decrease in intensity once the carrier density is sufficiently low that the states involved are no longer saturated

    Optical properties of c-Plane InGaN/GaN single quantum wells as a function of total electric field strength

    Get PDF
    We present low temperature photoluminescence spectra from four InGaN/GaN single quantum well structures where the total electric field across the quantum wells was varied by the manipulation of the surface polarization field, which is of opposite sign to the electrostatic built-in field originating from spontaneous and piezoelectric polarization intrinsic to the material. We find that, overall, the photoluminescence peak emission energy increases and its full width at half maximum decreases with decreasing total internal electric field. Using an atomistic tight-binding model of a quantum well with different total internal electric fields, we find that the calculated mean and standard deviation ground state transition energies follow the same trends with field as our experimentally determined spectral peak energies and widths. Overall, we attribute this behavior to a reduction in the quantum confined Stark effect and a connected reduction in the variation of ground state transition energies with decreasing electric field, respectively

    Nitride Single Photon Sources

    Get PDF
    Single photon sources are a key enabling technology for quantum communications, and in the future more advanced quantum light sources may underpin other quantum information processing paradigms such as linear optical quantum computation. In considering possible practical implementations of future quantum technologies, the nitride materials system is attractive since nitride quantum dots (QDs) achieve single photon emission at easily accessible temperatures [1], potentially enabling the implementation of quantum key distribution paradigms in contexts where cryogenic cooling is impracticable

    Theoretical and experimental analysis of radiative recombination lifetimes in nonpolar InGaN/GaN quantum dots

    Get PDF
    We present here a combined experimental and theoretical analysis of the radiative recombination lifetime in a-plane (11math formula0) InGaN/GaN quantum dots. The structures have been grown by modified droplet epitaxy and time-resolved photoluminescence measurements have been performed to gain insight into the radiative lifetimes of these structures. This analysis is complemented by multi-band math formula calculations. To account for excitonic effects, the math formula theory is coupled with self-consistent Hartree calculations. Special attention is paid to the impact of the quantum dot size on the results. Our calculations show that the residual built-in fields in these nonpolar structures are compensated by the attractive Coulomb interaction, leading to the situation that the oscillator strength is almost unaffected by changes in the quantum dot size. Furthermore, our theoretical studies reveal that the radiative lifetimes are one order magnitude lower than values for c-plane systems of identical size and shape. Our theoretical findings are consistent with experimental results. Also, the calculated lifetimes are comparable in magnitude to the measured values. The majority of the measured dots produce lifetime values of 250–300 ps, highlighting the potential of these nanostructures for future high-speed single-photon emitters.This work was supported by Science Foundation Ireland (project number 13/SIRG/2210) and Engineering and Physical Sciences Research Council (EPSRC) UK (Grants EP/M012379/1 and EP/M011682/1)

    The nature of carrier localisation in polar and nonpolar InGaN/GaN quantum wells

    Get PDF
    © 2016 Author(s). In this paper, we compare and contrast the experimental data and the theoretical predictions of the low temperature optical properties of polar and nonpolar InGaN/GaN quantum well structures. In both types of structure, the optical properties at low temperatures are governed by the effects of carrier localisation. In polar structures, the effect of the in-built electric field leads to electrons being mainly localised at well width fluctuations, whereas holes are localised at regions within the quantum wells, where the random In distribution leads to local minima in potential energy. This leads to a system of independently localised electrons and holes. In nonpolar quantum wells, the nature of the hole localisation is essentially the same as the polar case but the electrons are now coulombically bound to the holes forming localised excitons. These localisation mechanisms are compatible with the large photoluminescence linewidths of the polar and nonpolar quantum wells as well as the different time scales and form of the radiative recombination decay curves.This work was carried out with the support of the United Kingdom Engineering and Physical Sciences Research Council under grant Nos. EP\J001627\1, EP/I012591/1 and EP/H011676/1 and EP\J003603\1, Science Foundation Ireland (SFI) under project numbers 13/SIRG/2210 and 10/IN.1/I2994 and the European Union 7th Framework Programme project DEEPEN (grant agreement Number 604416). S. S. also acknowledges computing resources at Tyndall provided by SFI and the SFI and Higher Education Authority funded Irish Centre for High End Computing

    Effects of Chronic Ethanol Treatment on Neocortex

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/66043/1/j.1530-0277.1986.tb05133.x.pd

    Hidden Orbital Order in URu2Si2URu_{2}Si_{2}

    Full text link
    When matter is cooled from high temperatures, collective instabilities develop amongst its constituent particles that lead to new kinds of order. An anomaly in the specific heat is a classic signature of this phenomenon. Usually the associated order is easily identified, but sometimes its nature remains elusive. The heavy fermion metal URu2Si2URu_2Si_2 is one such example, where the order responsible for the sharp specific heat anomaly at T0=17KT_0=17 K has remained unidentified despite more than seventeen years of effort. In URu2Si2URu_{2}Si_{2}, the coexistence of large electron-electron repulsion and antiferromagnetic fluctuations in URu2Si2URu_2Si_2 leads to an almost incompressible heavy electron fluid, where anisotropically paired quasiparticle states are energetically favored. In this paper we use these insights to develop a detailed proposal for the hidden order in URu2Si2URu_2Si_2. We show that incommensurate orbital antiferromagnetism, associated with circulating currents between the uranium ions, can account for the local fields and entropy loss observed at the 17K17 K transition; furthermore we make detailed predictions for neutron scattering measurements

    Chlorpromazine for schizophrenia: a Cochrane systematic review of 50 years of randomised controlled trials

    Get PDF
    BACKGROUND: Chlorpromazine (CPZ) remains one of the most common drugs used for people with schizophrenia worldwide, and a benchmark against which other treatments can be evaluated. Quantitative reviews are rare; this one evaluates the effects of chlorpromazine in the treatment of schizophrenia in comparison with placebo. METHODS: We sought all relevant randomised controlled trials (RCT) comparing chlorpromazine to placebo by electronic and reference searching, and by contacting trial authors and the pharmaceutical industry. Data were extracted from selected trials and, where possible, synthesised and random effects relative risk (RR), the number needed to treat (NNT) and their 95% confidence intervals (CI) calculated. RESULTS: Fifty RCTs from 1955–2000 were included with 5276 people randomised to CPZ or placebo. They constitute 2008 person-years spent in trials. Meta-analysis of these trials showed that chlorpromazine promotes a global improvement (n = 1121, 13 RCTs, RR 0.76 CI 0.7 to 0.9, NNT 7 CI 5 to 10), although a considerable placebo response is also seen. People allocated to chlorpromazine tended not to leave trials early in both the short (n = 945, 16 RCTs, RR 0.74 CI 0.5 to 1.1) and medium term (n = 1861, 25 RCTs, RR 0.79 CI 0.6 to 1.1). There were, however, many adverse effects. Chlorpromazine is sedating (n = 1242, 18 RCTs, RR 2.3 CI 1.7 to 3.1, NNH 6 CI 5 to 8), increases a person's chances of experiencing acute movement disorders, Parkinsonism and causes low blood pressure with dizziness and dry mouth. CONCLUSION: It is understandable why the World Health Organization (WHO) have endorsed and included chlorpromazine in their list of essential drugs for use in schizophrenia. Low- and middle-income countries may have more complete evidence upon which to base their practice compared with richer nations using recent innovations
    • …
    corecore