33 research outputs found

    Blockade of TRPM7 Channel Activity and Cell Death by Inhibitors of 5-Lipoxygenase

    Get PDF
    TRPM7 is a ubiquitous divalent-selective ion channel with its own kinase domain. Recent studies have shown that suppression of TRPM7 protein expression by RNA interference increases resistance to ischemia-induced neuronal cell death in vivo and in vitro, making the channel a potentially attractive pharmacological target for molecular intervention. Here, we report the identification of the 5-lipoxygenase inhibitors, NDGA, AA861, and MK886, as potent blockers of the TRPM7 channel. Using a cell-based assay, application of these compounds prevented cell rounding caused by overexpression of TRPM7 in HEK-293 cells, whereas inhibitors of 12-lipoxygenase and 15-lipoxygenase did not prevent the change in cell morphology. Application of the 5-lipoxygenase inhibitors blocked heterologously expressed TRPM7 whole-cell currents without affecting the protein's expression level or its cell surface concentration. All three inhibitors were also effective in blocking the native TRPM7 current in HEK-293 cells. However, two other 5-lipoxygenase specific inhibitors, 5,6-dehydro-arachidonic acid and zileuton, were ineffective in suppressing TRPM7 channel activity. Targeted knockdown of 5-lipoxygenase did not reduce TRPM7 whole-cell currents. In addition, application of 5-hydroperoxyeicosatetraenoic acid (5-HPETE), the product of 5-lipoxygenase, or 5-HPETE's downstream metabolites, leukotriene B4 and leukotriene D4, did not stimulate TRPM7 channel activity. These data suggested that NDGA, AA861, and MK886 reduced the TRPM7 channel activity independent of their effect on 5-lipoxygenase activity. Application of AA861 and NDGA reduced cell death for cells overexpressing TRPM7 cultured in low extracellular divalent cations. Moreover, treatment of HEK-293 cells with AA861 increased cell resistance to apoptotic stimuli to a level similar to that obtained for cells in which TRPM7 was knocked down by RNA interference. In conclusion, NDGA, AA861, and MK886 are potent blockers of the TRPM7 channel capable of attenuating TRPM7's function during cell stress, making them effective tools for the biophysical characterization and suppression of TRPM7 channel conductance in vivo

    The alpha-kinase family: an exceptional branch on the protein kinase tree

    Get PDF
    The alpha-kinase family represents a class of atypical protein kinases that display little sequence similarity to conventional protein kinases. Early studies on myosin heavy chain kinases in Dictyostelium discoideum revealed their unusual propensity to phosphorylate serine and threonine residues in the context of an alpha-helix. Although recent studies show that some members of this family can also phosphorylate residues in non-helical regions, the name alpha-kinase has remained. During evolution, the alpha-kinase domains combined with many different functional subdomains such as von Willebrand factor-like motifs (vWKa) and even cation channels (TRPM6 and TRPM7). As a result, these kinases are implicated in a large variety of cellular processes such as protein translation, Mg2+ homeostasis, intracellular transport, cell migration, adhesion, and proliferation. Here, we review the current state of knowledge on different members of this kinase family and discuss the potential use of alpha-kinases as drug targets in diseases such as cancer

    Nothing Lasts Forever: Environmental Discourses on the Collapse of Past Societies

    Get PDF
    The study of the collapse of past societies raises many questions for the theory and practice of archaeology. Interest in collapse extends as well into the natural sciences and environmental and sustainability policy. Despite a range of approaches to collapse, the predominant paradigm is environmental collapse, which I argue obscures recognition of the dynamic role of social processes that lie at the heart of human communities. These environmental discourses, together with confusion over terminology and the concepts of collapse, have created widespread aporia about collapse and resulted in the creation of mixed messages about complex historical and social processes

    In search of attributes that support self-regulation in blended learning environments

    Get PDF

    Identification of groundwater contamination zones and its sources by using multivariate statistical approach in Thirumanimuthar sub-basin, Tamil Nadu, India

    No full text
    Hydrogeochemical studies have been made in the study area by using multivariate statistical analysis, which is mainly helpful for interpretation of complex data matrices to better understand the geochemical evolution of the area and it allows identifying the possible factors/sources that influence water systems. The spatial distribution of electrical conductivity reveals that an untreated industrial effluents, landfill and anthropogenic activities affecting their groundwater quality in its vicinity and the surrounding area. The dominance of ions was in the order of Na+ > Ca2+ > Mg2+ > K+ = Clāˆ’ > HCO3 āˆ’ > SO4 2āˆ’ > NO3 āˆ’ and Ca2+ > Mg2+ > Na+ > K+ = HCO3 āˆ’ > Clāˆ’ > NO3 āˆ’ > SO4 2āˆ’ during pre monsoon (PRM) and post monsoon (POM), respectively. The statistical results reveals that the groundwater chemistry gets altered by silicate weathering, ion exchange, leaching, anthropogenic input from agricultural return flow and longer distance of migrating groundwater. The hydrogeochemical regimes are distributed along the upstream side, northwestern, western and eastern parts of the study area. The study highlights the descriptive capabilities of conventional and multivariate techniques as effective tools in groundwater evaluation
    corecore