433 research outputs found

    Utilizing a biology-driven approach to map the exposome in health and disease:An essential investment to drive the next generation of environmental discovery

    Get PDF
    BACKGROUND: Recent developments in technologies have offered opportunities to measure the exposome with unprecedented accuracy and scale. However, because most investigations have targeted only a few exposures at a time, it is hypothesized that the majority of the environmental determinants of chronic diseases remain unknown. OBJECTIVES: We describe a functional exposome concept and explain how it can leverage existing bioassays and high-resolution mass spectrometry for exploratory study. We discuss how such an approach can address well-known barriers to interpret exposures and present a vision of next-generation exposomics. DISCUSSION: The exposome is vast. Instead of trying to capture all exposures, we can reduce the complexity by measuring the functional exposome— the totality of the biologically active exposures relevant to disease development—through coupling biochemical receptor-binding assays with affinity purification–mass spectrometry. We claim the idea of capturing exposures with functional biomolecules opens new opportunities to solve critical problems in exposomics, including low-dose detection, unknown annotations, and complex mixtures of exposures. Although novel, biology-based measurement can make use of the existing data processing and bioinformatics pipelines. The functional exposome concept also complements conven-tional targeted and untargeted approaches for understanding exposure-disease relationships. CONCLUSIONS: Although measurement technology has advanced, critical technological, analytical, and inferential barriers impede the detection of many environmental exposures relevant to chronic-disease etiology. Through biology-driven exposomics, it is possible to simultaneously scale up discovery of these causal environmental factors. https://doi.org/10.1289/EHP8327

    A 15.65 solar mass black hole in an eclipsing binary in the nearby spiral galaxy Messier 33

    Full text link
    Stellar-mass black holes are discovered in X-ray emitting binary systems, where their mass can be determined from the dynamics of their companion stars. Models of stellar evolution have difficulty producing black holes in close binaries with masses >10 solar masses, which is consistent with the fact that the most massive stellar black holes known so all have masses within 1 sigma of 10 solar masses. Here we report a mass of 15.65 +/- 1.45 solar masses for the black hole in the recently discovered system M33 X-7, which is located in the nearby galaxy Messier 33 (M33) and is the only known black hole that is in an eclipsing binary. In order to produce such a massive black hole, the progenitor star must have retained much of its outer envelope until after helium fusion in the core was completed. On the other hand, in order for the black hole to be in its present 3.45 day orbit about its 70.0 +/- 6.9 solar mass companion, there must have been a ``common envelope'' phase of evolution in which a significant amount of mass was lost from the system. We find the common envelope phase could not have occured in M33 X-7 unless the amount of mass lost from the progenitor during its evolution was an order of magnitude less than what is usually assumed in evolutionary models of massive stars.Comment: To appear in Nature October 18, 2007. Four figures (one color figure degraded). Differs slightly from published version. Supplementary Information follows in a separate postin

    Carpet-dust chemicals as measures of exposure: Implications of variability

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>There is increasing interest in using chemicals measured in carpet dust as indicators of chemical exposures. However, investigators have rarely sampled dust repeatedly from the same households and therefore little is known about the variability of chemical levels that exist within and between households in dust samples.</p> <p>Results</p> <p>We analyzed 9 polycyclic aromatic hydrocarbons, 6 polychlorinated biphenyls, and nicotine in 68 carpet-dust samples from 21 households in agricultural communities of Fresno County, California collected from 2003-2005. Chemical concentrations (ng per g dust) ranged from < 2-3,609 for 9 polycyclic aromatic hydrocarbons, from < 1-150 for 6 polychlorinated biphenyls, and from < 20-7,776 for nicotine. We used random-effects models to estimate variance components for concentrations of each of these carpet-dust chemicals and calculated the variance ratio, λ, defined as the ratio of the within-household variance component to the between-household variance component. Subsequently, we used the variance ratios calculated from our data, to illustrate the potential effect of measurement error on the attenuation of odds ratios in hypothetical case-control studies. We found that the median value of the estimated variance ratios was 0.33 (range: 0.13-0.72). Correspondingly, in case-control studies of associations between these carpet-dust chemicals and disease, given the collection of only one measurement per household and a hypothetical odds ratio of 1.5, we expect that the observed odds ratios would range from 1.27 to 1.43. Moreover, for each of the chemicals analyzed, the collection of three repeated dust samples would limit the expected magnitude of odds ratio attenuation to less than 20%.</p> <p>Conclusions</p> <p>Our findings suggest that attenuation bias should be relatively modest when using these semi-volatile carpet-dust chemicals as exposure surrogates in epidemiologic studies.</p

    Accretion of Planetary Material onto Host Stars

    Full text link
    Accretion of planetary material onto host stars may occur throughout a star's life. Especially prone to accretion, extrasolar planets in short-period orbits, while relatively rare, constitute a significant fraction of the known population, and these planets are subject to dynamical and atmospheric influences that can drive significant mass loss. Theoretical models frame expectations regarding the rates and extent of this planetary accretion. For instance, tidal interactions between planets and stars may drive complete orbital decay during the main sequence. Many planets that survive their stars' main sequence lifetime will still be engulfed when the host stars become red giant stars. There is some observational evidence supporting these predictions, such as a dearth of close-in planets around fast stellar rotators, which is consistent with tidal spin-up and planet accretion. There remains no clear chemical evidence for pollution of the atmospheres of main sequence or red giant stars by planetary materials, but a wealth of evidence points to active accretion by white dwarfs. In this article, we review the current understanding of accretion of planetary material, from the pre- to the post-main sequence and beyond. The review begins with the astrophysical framework for that process and then considers accretion during various phases of a host star's life, during which the details of accretion vary, and the observational evidence for accretion during these phases.Comment: 18 pages, 5 figures (with some redacted), invited revie

    The Evolution of Compact Binary Star Systems

    Get PDF
    We review the formation and evolution of compact binary stars consisting of white dwarfs (WDs), neutron stars (NSs), and black holes (BHs). Binary NSs and BHs are thought to be the primary astrophysical sources of gravitational waves (GWs) within the frequency band of ground-based detectors, while compact binaries of WDs are important sources of GWs at lower frequencies to be covered by space interferometers (LISA). Major uncertainties in the current understanding of properties of NSs and BHs most relevant to the GW studies are discussed, including the treatment of the natal kicks which compact stellar remnants acquire during the core collapse of massive stars and the common envelope phase of binary evolution. We discuss the coalescence rates of binary NSs and BHs and prospects for their detections, the formation and evolution of binary WDs and their observational manifestations. Special attention is given to AM CVn-stars -- compact binaries in which the Roche lobe is filled by another WD or a low-mass partially degenerate helium-star, as these stars are thought to be the best LISA verification binary GW sources.Comment: 105 pages, 18 figure

    New Insights into X-ray Binaries

    Full text link
    X-ray binaries are excellent laboratories to study collapsed objects. On the one hand, transient X-ray binaries contain the best examples of stellar-mass black holes while persistent X-ray binaries mostly harbour accreting neutron stars. The determination of stellar masses in persistent X-ray binaries is usually hampered by the overwhelming luminosity of the X-ray heated accretion disc. However, the discovery of high-excitation emission lines from the irradiated companion star has opened new routes in the study of compact objects. This paper presents novel techniques which exploits these irradiated lines and summarises the dynamical masses obtained for the two populations of collapsed stars: neutron stars and black holes.Comment: 12 pages, 5 figures, 2 tables, Invited review to plenary session in "Highlights of Spanish Astrophysics V", Proceedings of the VIII Scientific Meeting of the Spanish Astronomical Society (SEA) held in Santander, 7-11 July, 2008. Edited by J. Gorgas, L. J. Goicoechea, J. I. Gonzalez-Serrano, J. M. Dieg
    corecore