1,049 research outputs found

    The structure of a resuscitation-promoting factor domain from Mycobacterium tuberculosis shows homology to lysozymes

    Get PDF
    Resuscitation-promoting factor (RPF) proteins reactivate stationary-phase cultures of (G+C)-rich Gram-positive bacteria including the causative agent of tuberculosis, Mycobacterium tuberculosis. We report the solution structure of the RPF domain from M. tuberculosis Rv1009 (RpfB) solved by heteronuclear multidimensional NMR. Structural homology with various glycoside hydrolases suggested that RpfB cleaved oligosaccharides. Biochemical studies indicate that a conserved active site glutamate is important for resuscitation activity. These data, as well as the presence of a clear binding pocket for a large molecule, indicate that oligosaccharide cleavage is probably the signal for revival from dormancy

    The influence of feature selection methods on accuracy, stability and interpretability of molecular signatures

    Get PDF
    Motivation: Biomarker discovery from high-dimensional data is a crucial problem with enormous applications in biology and medicine. It is also extremely challenging from a statistical viewpoint, but surprisingly few studies have investigated the relative strengths and weaknesses of the plethora of existing feature selection methods. Methods: We compare 32 feature selection methods on 4 public gene expression datasets for breast cancer prognosis, in terms of predictive performance, stability and functional interpretability of the signatures they produce. Results: We observe that the feature selection method has a significant influence on the accuracy, stability and interpretability of signatures. Simple filter methods generally outperform more complex embedded or wrapper methods, and ensemble feature selection has generally no positive effect. Overall a simple Student's t-test seems to provide the best results. Availability: Code and data are publicly available at http://cbio.ensmp.fr/~ahaury/

    Design and characterization of a direct ELISA for the detection and quantification of leucomalachite green

    Get PDF
    Malachite green (MG), a member of the N-methylated triphenylmethane class of dyes, has long been used to control fungal and protozoan infections in fish. MG is easily absorbed by fish during waterborne exposure and is rapidly metabolized into leucomalachite green (LMG), which is known for its long residence time in edible fish tissue. This paper describes the development of an enzyme-linked immunosorbent assay (ELISA) for the detection and quantification of LMG in fish tissue. This development includes a simple and versatile method for the conversion of LMG to monodesmethyl-LMG, which is then conjugated to bovine serum albumin (BSA) to produce an immunogenic material. Rabbit polyclonal antibodies are generated against this immunogen, purified and used to develop a direct competitive enzyme-linked immunosorbent assay (ELISA) for the screening and quantification of LMG in fish tissue. The assay performed well, with a limit of detection (LOD) and limit of quantification (LOQ) of 0.1 and 0.3 ng g−1 of fish tissue, respectively. The average extraction efficiency from a matrix of tilapia fillets was approximately 73% and the day-to-day reproducibility for these extractions in the assay was between 5 and 10%

    Semen May Harbor HIV Despite Effective HAART: Another Piece in the Puzzle

    Get PDF
    The risk of male-to-female intravaginal HIV-1 transmission is estimated at about 1 event per 200–2000 coital acts. The aim of this study was to assess the residual risk of HIV presence in semen in patients under HAART therapy.The study took place in France from October 2001 to March 2009. 394 paired blood and semen samples were provided from 332 HIV-1 infected men. The Roche Cobas AMPLICOR Monitor HIV assay was used to quantify HIV-1 RNA in blood and in seminal plasma. Three percent of 394 HIV-1 infected men enrolled in an assisted reproductive technology program harbored detectable HIV-1 RNA in semen, although they had no other sexually transmitted disease and their blood viral load was undetectable for at least 6 months under antiretroviral treatment.These data suggest that undetectable plasma HIV RNA means a lower risk of viral transmission through seminal fluid on a population level, but not necessarily at the level of the individual

    Canine distemper virus persistence in demyelinating encephalitis by swift intracellular cell-to-cell spread in astrocytes is controlled by the viral attachment protein

    Get PDF
    The mechanism of viral persistence, the driving force behind the chronic progression of inflammatory demyelination in canine distemper virus (CDV) infection, is associated with non-cytolytic viral cell-to-cell spread. Here, we studied the molecular mechanisms of viral spread of a recombinant fluorescent protein-expressing virulent CDV in primary canine astrocyte cultures. Time-lapse video microscopy documented that CDV spread was very efficient using cell processes contacting remote target cells. Strikingly, CDV transmission to remote cells could occur in less than 6 h, suggesting that a complete viral cycle with production of extracellular free particles was not essential in enabling CDV to spread in glial cells. Titration experiments and electron microscopy confirmed a very low CDV particle production despite higher titers of membrane-associated viruses. Interestingly, confocal laser microscopy and lentivirus transduction indicated expression and functionality of the viral fusion machinery, consisting of the viral fusion (F) and attachment (H) glycoproteins, at the cell surface. Importantly, using a single-cycle infectious recombinant H-knockout, H-complemented virus, we demonstrated that H, and thus potentially the viral fusion complex, was necessary to enable CDV spread. Furthermore, since we could not detect CD150/SLAM expression in brain cells, the presence of a yet non-identified glial receptor for CDV was suggested. Altogether, our findings indicate that persistence in CDV infection results from intracellular cell-to-cell transmission requiring the CDV-H protein. Viral transfer, happening selectively at the tip of astrocytic processes, may help the virus to cover long distances in the astroglial network, “outrunning” the host’s immune response in demyelinating plaques, thus continuously eliciting new lesions

    Correlation of psychomotor findings and the ability to partially weight bear

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Partial weight bearing is thought to avoid excessive loading that may interfere with the healing process after surgery of the pelvis or the lower extremity. The object of this study was to investigate the relationship between the ability to partially weight bear and the patient's psychomotor skills and an additional evaluation of the possibility to predict this ability with a standardized psychomotor test.</p> <p>Methods</p> <p>50 patients with a prescribed partial weight bearing at a target load of 15 kg following surgery were verbally instructed by a physical therapist. After the instruction and sufficient training with the physical therapist vertical ground reaction forces using matrix insoles were measured while walking with forearm crutches. Additionally, psychomotor skills were tested with the Motorische Leistungsserie (MLS). To test for correlations Spearman's Rank correlation was used. For further comparison of the two groups a Mann-Withney test was performed using Bonferroni correction.</p> <p>Results</p> <p>The patient's age and body weight significantly correlated with the ability to partially weight bear at a 15 kg target load. There were significant correlations between several subtests of the MLS and ground reaction forces measured while walking with crutches. Patients that were able to correctly perform partial weight bearing showed significant better psychomotor skills especially for those subtests where both hands had to be coordinated simultaneously.</p> <p>Conclusions</p> <p>The ability to partially weight bear is associated with psychomotor skills. The MLS seems to be a tool that helps predicting the ability to keep within the prescribed load limits.</p

    Prophylactic and therapeutic activity of fully human monoclonal antibodies directed against Influenza A M2 protein

    Get PDF
    Influenza virus infection is a prevalent disease in humans. Antibodies against hemagglutinin have been shown to prevent infection and hence hemagglutinin is the major constituent of current vaccines. Antibodies directed against the highly conserved extracellular domain of M2 have also been shown to mediate protection against Influenza A infection in various animal models. Active vaccination is generally considered the best approach to combat viral diseases. However, passive immunization is an attractive alternative, particularly in acutely exposed or immune compromized individuals, young children and the elderly. We recently described a novel method for the rapid isolation of natural human antibodies by mammalian cell display. Here we used this approach to isolate human monoclonal antibodies directed against the highly conserved extracellular domain of the Influenza A M2 protein. The identified antibodies bound M2 peptide with high affinities, recognized native cell-surface expressed M2 and protected mice from a lethal influenza virus challenge. Moreover, therapeutic treatment up to 2 days after infection was effective, suggesting that M2-specific monoclonals have a great potential as immunotherapeutic agents against Influenza infection
    corecore