69 research outputs found
Radio Emission from Ultra-Cool Dwarfs
The 2001 discovery of radio emission from ultra-cool dwarfs (UCDs), the very
low-mass stars and brown dwarfs with spectral types of ~M7 and later, revealed
that these objects can generate and dissipate powerful magnetic fields. Radio
observations provide unparalleled insight into UCD magnetism: detections extend
to brown dwarfs with temperatures <1000 K, where no other observational probes
are effective. The data reveal that UCDs can generate strong (kG) fields,
sometimes with a stable dipolar structure; that they can produce and retain
nonthermal plasmas with electron acceleration extending to MeV energies; and
that they can drive auroral current systems resulting in significant
atmospheric energy deposition and powerful, coherent radio bursts. Still to be
understood are the underlying dynamo processes, the precise means by which
particles are accelerated around these objects, the observed diversity of
magnetic phenomenologies, and how all of these factors change as the mass of
the central object approaches that of Jupiter. The answers to these questions
are doubly important because UCDs are both potential exoplanet hosts, as in the
TRAPPIST-1 system, and analogues of extrasolar giant planets themselves.Comment: 19 pages; submitted chapter to the Handbook of Exoplanets, eds. Hans
J. Deeg and Juan Antonio Belmonte (Springer-Verlag
X-Ray Spectroscopy of Stars
(abridged) Non-degenerate stars of essentially all spectral classes are soft
X-ray sources. Low-mass stars on the cooler part of the main sequence and their
pre-main sequence predecessors define the dominant stellar population in the
galaxy by number. Their X-ray spectra are reminiscent, in the broadest sense,
of X-ray spectra from the solar corona. X-ray emission from cool stars is
indeed ascribed to magnetically trapped hot gas analogous to the solar coronal
plasma. Coronal structure, its thermal stratification and geometric extent can
be interpreted based on various spectral diagnostics. New features have been
identified in pre-main sequence stars; some of these may be related to
accretion shocks on the stellar surface, fluorescence on circumstellar disks
due to X-ray irradiation, or shock heating in stellar outflows. Massive, hot
stars clearly dominate the interaction with the galactic interstellar medium:
they are the main sources of ionizing radiation, mechanical energy and chemical
enrichment in galaxies. High-energy emission permits to probe some of the most
important processes at work in these stars, and put constraints on their most
peculiar feature: the stellar wind. Here, we review recent advances in our
understanding of cool and hot stars through the study of X-ray spectra, in
particular high-resolution spectra now available from XMM-Newton and Chandra.
We address issues related to coronal structure, flares, the composition of
coronal plasma, X-ray production in accretion streams and outflows, X-rays from
single OB-type stars, massive binaries, magnetic hot objects and evolved WR
stars.Comment: accepted for Astron. Astrophys. Rev., 98 journal pages, 30 figures
(partly multiple); some corrections made after proof stag
X-ray Studies of Exoplanets: A 2020 Decadal Survey White Paper
Over the last two decades, the discovery of exoplanets has fundamentally changed our perception of the universe and humanity's place within it. Recent work indicates that a solar system's X-ray and high energy particle environment is of fundamental importance to the formation and development of the atmospheres of close-in planets such as hot Jupiters, and Earth-like planets around M stars. X-ray imaging and spectroscopy provide powerful and unique windows into the high energy flux that an exoplanet experiences, and X-ray photons also serve as proxies for potentially transfigurative coronal mass ejections. Finally, if the host star is a bright enough X-ray source, transit measurements akin to those in the optical and infrared are possible and allow for direct characterization of the upper atmospheres of exoplanets. In this brief white paper, we discuss contributions to the study of exoplanets and their environs which can be made by X-ray data of increasingly high quality that are achievable in the next 10--15 years
BDNF Facilitates L-LTP Maintenance in the Absence of Protein Synthesis through PKMζ
Late-phase long term potentiation (L-LTP) is thought to be the cellular basis for long-term memory (LTM). While LTM as well as L-LTP is known to depend on transcription and translation, it is unclear why brain-derived neurotrophic factor (BDNF) could sustain L-LTP when protein synthesis is inhibited. The persistently active protein kinase ζ (PKMζ) is the only molecule implicated in perpetuating L-LTP maintenance. Here, in mouse acute brain slices, we show that inhibition of PKMζ reversed BDNF-dependent form of L-LTP. While BDNF did not alter the steady-state level of PKMζ, BDNF together with the L-LTP inducing theta-burst stimulation (TBS) increased PKMζ level even without protein synthesis. Finally, in the absence of de novo protein synthesis, BDNF maintained TBS-induced PKMζ at a sufficient level. These results suggest that BDNF sustains L-LTP through PKMζ in a protein synthesis-independent manner, revealing an unexpected link between BDNF and PKMζ
Ubiquitous molecular substrates for associative learning and activity-dependent neuronal facilitation.
Recent evidence suggests that many of the molecular cascades and substrates that contribute to learning-related forms of neuronal plasticity may be conserved across ostensibly disparate model systems. Notably, the facilitation of neuronal excitability and synaptic transmission that contribute to associative learning in Aplysia and Hermissenda, as well as associative LTP in hippocampal CA1 cells, all require (or are enhanced by) the convergence of a transient elevation in intracellular Ca2+ with transmitter binding to metabotropic cell-surface receptors. This temporal convergence of Ca2+ and G-protein-stimulated second-messenger cascades synergistically stimulates several classes of serine/threonine protein kinases, which in turn modulate receptor function or cell excitability through the phosphorylation of ion channels. We present a summary of the biophysical and molecular constituents of neuronal and synaptic facilitation in each of these three model systems. Although specific components of the underlying molecular cascades differ across these three systems, fundamental aspects of these cascades are widely conserved, leading to the conclusion that the conceptual semblance of these superficially disparate systems is far greater than is generally acknowledged. We suggest that the elucidation of mechanistic similarities between different systems will ultimately fulfill the goal of the model systems approach, that is, the description of critical and ubiquitous features of neuronal and synaptic events that contribute to memory induction
The Biochemistry, Ultrastructure, and Subunit Assembly Mechanism of AMPA Receptors
The AMPA-type ionotropic glutamate receptors (AMPA-Rs) are tetrameric ligand-gated ion channels that play crucial roles in synaptic transmission and plasticity. Our knowledge about the ultrastructure and subunit assembly mechanisms of intact AMPA-Rs was very limited. However, the new studies using single particle EM and X-ray crystallography are revealing important insights. For example, the tetrameric crystal structure of the GluA2cryst construct provided the atomic view of the intact receptor. In addition, the single particle EM structures of the subunit assembly intermediates revealed the conformational requirement for the dimer-to-tetramer transition during the maturation of AMPA-Rs. These new data in the field provide new models and interpretations. In the brain, the native AMPA-R complexes contain auxiliary subunits that influence subunit assembly, gating, and trafficking of the AMPA-Rs. Understanding the mechanisms of the auxiliary subunits will become increasingly important to precisely describe the function of AMPA-Rs in the brain. The AMPA-R proteomics studies continuously reveal a previously unexpected degree of molecular heterogeneity of the complex. Because the AMPA-Rs are important drug targets for treating various neurological and psychiatric diseases, it is likely that these new native complexes will require detailed mechanistic analysis in the future. The current ultrastructural data on the receptors and the receptor-expressing stable cell lines that were developed during the course of these studies are useful resources for high throughput drug screening and further drug designing. Moreover, we are getting closer to understanding the precise mechanisms of AMPA-R-mediated synaptic plasticity
Low-mass and sub-stellar eclipsing binaries in stellar clusters
We highlight the importance of eclipsing double-line binaries in our
understanding on star formation and evolution. We review the recent discoveries
of low-mass and sub-stellar eclipsing binaries belonging to star-forming
regions, open clusters, and globular clusters identified by ground-based
surveys and space missions with high-resolution spectroscopic follow-up. These
discoveries provide benchmark systems with known distances, metallicities, and
ages to calibrate masses and radii predicted by state-of-the-art evolutionary
models to a few percent. We report their density and discuss current
limitations on the accuracy of the physical parameters. We discuss future
opportunities and highlight future guidelines to fill gaps in age and
metallicity to improve further our knowledge of low-mass stars and brown
dwarfs.Comment: 30 pages, 5 figures, no table. Review pape
Changes to the Fossil Record of Insects through Fifteen Years of Discovery
The first and last occurrences of hexapod families in the fossil record are compiled from publications up to end-2009. The major features of these data are compared with those of previous datasets (1993 and 1994). About a third of families (>400) are new to the fossil record since 1994, over half of the earlier, existing families have experienced changes in their known stratigraphic range and only about ten percent have unchanged ranges. Despite these significant additions to knowledge, the broad pattern of described richness through time remains similar, with described richness increasing steadily through geological history and a shift in dominant taxa, from Palaeoptera and Polyneoptera to Paraneoptera and Holometabola, after the Palaeozoic. However, after detrending, described richness is not well correlated with the earlier datasets, indicating significant changes in shorter-term patterns. There is reduced Palaeozoic richness, peaking at a different time, and a less pronounced Permian decline. A pronounced Triassic peak and decline is shown, and the plateau from the mid Early Cretaceous to the end of the period remains, albeit at substantially higher richness compared to earlier datasets. Origination and extinction rates are broadly similar to before, with a broad decline in both through time but episodic peaks, including end-Permian turnover. Origination more consistently exceeds extinction compared to previous datasets and exceptions are mainly in the Palaeozoic. These changes suggest that some inferences about causal mechanisms in insect macroevolution are likely to differ as well
- …
