122 research outputs found

    Influence of training status and exercise modality on pulmonary O2 uptake kinetics in pre-pubertal girls

    Get PDF
    The limited available evidence suggests that endurance training does not influence the pulmonary oxygen uptake (V(O)(2)) kinetics of pre-pubertal children. We hypothesised that, in young trained swimmers, training status-related adaptations in the V(O)(2) and heart rate (HR) kinetics would be more evident during upper body (arm cranking) than during leg cycling exercise. Eight swim-trained (T; 11.4 +/- 0.7 years) and eight untrained (UT; 11.5 +/- 0.6 years) girls completed repeated bouts of constant work rate cycling and upper body exercise at 40% of the difference between the gas exchange threshold and peak V(O)(2). The phase II V(O)(2) time constant was significantly shorter in the trained girls during upper body exercise (T: 25 +/- 3 vs. UT: 37 +/- 6 s; P < 0.01), but no training status effect was evident in the cycle response (T: 25 +/- 5 vs. UT: 25 +/- 7 s). The V(O)(2) slow component amplitude was not affected by training status or exercise modality. The time constant of the HR response was significantly faster in trained girls during both cycle (T: 31 +/- 11 vs. UT: 47 +/- 9 s; P < 0.01) and upper body (T: 33 +/- 8 vs. UT: 43 +/- 4 s; P < 0.01) exercise. The time constants of the phase II V(O)(2)and HR response were not correlated regardless of training status or exercise modality. This study demonstrates for the first time that swim-training status influences upper body V(O)(2) kinetics in pre-pubertal children, but that cycle ergometry responses are insensitive to such differences

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Recombination-induced suppression of cell division following P1-mediated generalized transduction in Klebsiella aerogenes

    Full text link
    Klebsiella aerogenes recombinants resulting from bacteriophage P1-mediated generalized transduction failed to increase in number for approximately six generations after transduction. Nevertheless these recombinants continued to grow and became sensitive to penicillin after a transient resistance, suggesting that the cells were growing as long, non-dividing filaments. When filamentous cells were isolated from transduced cultures by gradient centrifugation, recombinants were 1000-fold more frequent among the filaments than among the normal-sized cells. The suppression of cell-division lasted for six generations whether markers near the origin ( gln, ilv ) or terminus ( his, trp ) of chromosome replication were used, despite a 50-fold difference in transduction frequencies for these markers. The suppression of cell division was a host response to recombination rather than to P1 invasion since cells lysogenized by P1 in these same experiments showed only a short (two generation) suppression of cell division. We speculate that the suppression of cell-division is an SOS response triggered by the degraded DNA not incorporated in the final recombinant. We demonstrate that both the filamentation and the transient penicillin resistance of recombinant cells can be exploited to enrich greatly for recombinants, raising transduction frequencies to as high as 10 -3 .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47551/1/438_2004_Article_BF00337815.pd

    Adhesion Forces and Coaggregation between Vaginal Staphylococci and Lactobacilli

    Get PDF
    Urogenital infections are the most common ailments afflicting women. They are treated with dated antimicrobials whose efficacy is diminishing. The process of infection involves pathogen adhesion and displacement of indigenous Lactobacillus crispatus and Lactobacillus jensenii. An alternative therapeutic approach to antimicrobial therapy is to reestablish lactobacilli in this microbiome through probiotic administration. We hypothesized that lactobacilli displaying strong adhesion forces with pathogens would facilitate coaggregation between the two strains, ultimately explaining the elimination of pathogens seen in vivo. Using atomic force microscopy, we found that adhesion forces between lactobacilli and three virulent toxic shock syndrome toxin 1-producing Staphylococcus aureus strains, were significantly stronger (2.2–6.4 nN) than between staphylococcal pairs (2.2–3.4 nN), especially for the probiotic Lactobacillus reuteri RC-14 (4.0–6.4 nN) after 120 s of bond-strengthening. Moreover, stronger adhesion forces resulted in significantly larger coaggregates. Adhesion between the bacteria occurred instantly upon contact and matured within one to two minutes, demonstrating the potential for rapid anti-pathogen effects using a probiotic. Coaggregation is one of the recognized mechanisms through which lactobacilli can exert their probiotic effects to create a hostile micro-environment around a pathogen. With antimicrobial options fading, it therewith becomes increasingly important to identify lactobacilli that bind strongly with pathogens

    Low-penetrance alleles predisposing to sporadic colorectal cancers: a French case-controlled genetic association study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sporadic colorectal cancers (CRC) are multifactorial diseases resulting from the combined effects of numerous genetic, environmental and behavioral risk factors. Genetic association studies have suggested low-penetrance alleles of extremely varied genes to be involved in susceptibility to CRC in Caucasian populations.</p> <p>Methods</p> <p>Through a large genetic association study based on 1023 patients with sporadic CRC and 1121 controls, we tested a panel of these low-penetrance alleles to find out whether they could determine "genotypic profiles" at risk for CRC among individuals of the French population. We examined 52 polymorphisms of 35 genes – drawn from inflammation, xenobiotic detoxification, one-carbon, insulin signaling, and DNA repair pathways – for their possible contribution to colorectal carcinogenesis. The risk of cancer associated with these polymorphisms was assessed by calculation of odds ratios (OR) using multivariate analyses and logistic regression.</p> <p>Results</p> <p>Whereas all these polymorphisms had previously been found to be associated with CRC risk, especially in Caucasian populations, we were able to replicate the association for only five of them. Three SNPs were shown to increase CRC risk: <it>PTGS1 </it>c.639C>A (p.Gly213Gly), <it>IL8 </it>c.-352T>A, and <it>MTHFR </it>c.1286A>C (p.Ala429Glu). On the contrary, two other SNPs, <it>PLA2G2A </it>c.435+230C>T and <it>PPARG </it>c.1431C>T (p.His477His), were associated with a decrease in CRC risk. Further analyses highlighted genotypic combinations having a greater predisposing effect on CRC (OR 1.97, 95%CI 1.31–2.97, p = 0.0009) than the allelic variants that were examined separately.</p> <p>Conclusion</p> <p>The identification of CRC-predisposing combinations, composed of alleles <it>PTGS1 </it>c.639A, <it>PLA2G2A </it>c.435+230C, <it>PPARG </it>c.1431C, <it>IL8 </it>c.-352A, and <it>MTHFR </it>c.1286C, highlights the importance of inflammatory processes in susceptibility to sporadic CRC, as well as a possible crosstalk between inflammation and one-carbon pathways.</p

    Ouabain Stimulates a Na+/K+-ATPase-Mediated SFK-Activated Signalling Pathway That Regulates Tight Junction Function in the Mouse Blastocyst

    Get PDF
    The Na+/K+-ATPase plays a pivotal role during preimplantation development; it establishes a trans-epithelial ionic gradient that facilitates the formation of the fluid-filled blastocyst cavity, crucial for implantation and successful pregnancy. The Na+/K+-ATPase is also implicated in regulating tight junctions and cardiotonic steroid (CTS)-induced signal transduction via SRC. We investigated the expression of SRC family kinase (SFK) members, Src and Yes, during preimplantation development and determined whether SFK activity is required for blastocyst formation. Embryos were collected following super-ovulation of CD1 or MF1 female mice. RT-PCR was used to detect SFK mRNAs encoding Src and Yes throughout preimplantation development. SRC and YES protein were localized throughout preimplantation development. Treatment of mouse morulae with the SFK inhibitors PP2 and SU6656 for 18 hours resulted in a reversible blockade of progression to the blastocyst stage. Blastocysts treated with 10−3 M ouabain for 2 or 10 minutes and immediately immunostained for phosphorylation at SRC tyr418 displayed reduced phosphorylation while in contrast blastocysts treated with 10−4 M displayed increased tyr418 fluorescence. SFK inhibition increased and SFK activation reduced trophectoderm tight junction permeability in blastocysts. The results demonstrate that SFKs are expressed during preimplantation development and that SFK activity is required for blastocyst formation and is an important mediator of trophectoderm tight junction permeability

    Building a Digital Wind Farm

    Get PDF

    Lawson criterion for ignition exceeded in an inertial fusion experiment

    Get PDF
    For more than half a century, researchers around the world have been engaged in attempts to achieve fusion ignition as a proof of principle of various fusion concepts. Following the Lawson criterion, an ignited plasma is one where the fusion heating power is high enough to overcome all the physical processes that cool the fusion plasma, creating a positive thermodynamic feedback loop with rapidly increasing temperature. In inertially confined fusion, ignition is a state where the fusion plasma can begin "burn propagation" into surrounding cold fuel, enabling the possibility of high energy gain. While "scientific breakeven" (i.e., unity target gain) has not yet been achieved (here target gain is 0.72, 1.37 MJ of fusion for 1.92 MJ of laser energy), this Letter reports the first controlled fusion experiment, using laser indirect drive, on the National Ignition Facility to produce capsule gain (here 5.8) and reach ignition by nine different formulations of the Lawson criterion

    Membrainy: a ‘smart’, unified membrane analysis tool

    Get PDF
    BACKGROUND: The study of biological membranes using Molecular Dynamics has become an increasingly popular means by which to investigate the interactions of proteins, peptides and potentials with lipid bilayers. These interactions often result in changes to the properties of the lipids which can modify the behaviour of the membrane. Membrainy is a unified membrane analysis tool that contains a broad spectrum of analytical techniques to enable: measurement of acyl chain order parameters; presentation of 2D surface and thickness maps; determination of lateral and axial headgroup orientations; measurement of bilayer and leaflet thickness; analysis of the annular shell surrounding membrane-embedded objects; quantification of gel percentage; time evolution of the transmembrane voltage; area per lipid calculations; and quantification of lipid mixing/demixing entropy. RESULTS: Each analytical component within Membrainy has been tested on a variety of lipid bilayer systems and was found to be either comparable to or an improvement upon existing software. For the analytical techniques that have no direct comparable software, our results were confirmed with experimental data. CONCLUSIONS: Membrainy is a user-friendly, intelligent membrane analysis tool that automatically interprets a variety of input formats and force fields, is compatible with both single and double bilayers, and capable of handling asymmetric bilayers and lipid flip-flopping. Membrainy has been designed for ease of use, requiring no installation or configuration and minimal user-input to operate
    corecore