127 research outputs found

    Cement leakage causes potential thermal injury in vertebroplasty

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Percutaneous vertebroplasty by injecting PMMA bone cement into the fractured vertebrae has been widely accepted in treatment of spinal compression fracture. However, the exothermic polymerization of bone cement may cause osseous or neural tissue injury. This study is thus designed to evaluate the potential risk of thermal damage in percutaneous vertebroplasty.</p> <p>Method</p> <p>Twelve porcine vertebrae were immersed in 37°C saline for the experiment. In the first stage of the study, vertebroplasty without cement leakage (control group, n = 6) was simulated. The anterior cortex, foramen, posterior cortex and the center of the vertebral body were selected for temperature measurement. Parameters including peak temperature and duration above 45°C were recorded. In the second stage, a model (n = 6) simulating bone cement leaking into the spinal canal was designed. The methods for temperature measurement were identical to those used in the first stage.</p> <p>Results</p> <p>In Stage 1 of the study (vertebroplasty of the porcine vertebral body in the absence of cement leakage), the average maximal temperature at the anterior cortex was 42.4 ± 2.2°C; at the neural foramen 39.5 ± 2.1°C; at the posterior cortex 40.0 ± 2.5°C and at the vertebral center, 68.1 ± 3.4°C. The average time interval above 45°C was 0 seconds at the anterior cortex; at the neural foramen, 0 seconds; at the posterior cortex, 0 seconds and at the vertebral center, 223 seconds. Thus, except at the core of the bone cement, temperatures around the vertebral body did not exceed 45°C. In Stage 2 of the study (cement leakage model), the average maximal temperature at the anterior cortex was 42.7 ± 2.4°C; at the neural foramen, 41.1 ± 0.4°C; at the posterior cortex, 59.1 ± 7.6°C and at the vertebral center, 77.3 ± 5.7°C. The average time interval above 45°C at the anterior cortex was 0 seconds; at the neural foramen, 0 seconds; at the posterior cortex, 329.3 seconds and at the vertebral center, 393.2 seconds. Based on these results, temperatures exceeded 45°C at the posterior cortex and at the vertebral center.</p> <p>Conclusions</p> <p>The results indicated that, for bone cement confined within the vertebra, curing temperatures do not directly cause thermal injury to the nearby soft tissue. If bone cement leaks into the spinal canal, the exothermic reaction at the posterior cortex might result in thermal injury to the neural tissue.</p

    Dutch women with a low birth weight have an increased risk of myocardial infarction later in life: a case control study

    Get PDF
    BACKGROUND: To investigate whether low birth weight increases the risk of myocardial infarction later in life in women. METHODS: Nationwide population-based case-control study. Patients and controls: 152 patients with a first myocardial infarction before the age of 50 years in the Netherlands. 568 control women who had not had a myocardial infarction stratified for age, calendar year of the index event, and area of residence. RESULTS: Birth weight in the patient group was significantly lower than in control women (3214 vs. 3370 gram, mean difference -156.3 gram (95%CI -9.5 to -303.1). The odds ratio for myocardial infarction, associated with a birth weight lower than 3000 gram (20(th )percentile in controls) compared to higher than 3000 gram was 1.7 (95%CI 1.1–2.7), while the odds ratio for myocardial infarction for children with a low birth weight (< 2000 g) compared to a birth weight ≥ 2000 g was 2.4 (95%CI 1.0 – 5.8). Both figures did not change after adjustment for putative confounders (age, education level, body mass index, waist-hip ratio, hypertension, diabetes, hypercholesterolemia, smoking, and family history of cardiovascular disease). CONCLUSIONS: Low birth weight is associated with an increased risk of myocardial infarction before age of 50 in Dutch women

    The Cultural Evolution of Democracy: Saltational Changes in A Political Regime Landscape

    Get PDF
    Transitions to democracy are most often considered the outcome of historical modernization processes. Socio-economic changes, such as increases in per capita GNP, education levels, urbanization and communication, have traditionally been found to be correlates or ‘requisites’ of democratic reform. However, transition times and the number of reform steps have not been studied comprehensively. Here we show that historically, transitions to democracy have mainly occurred through rapid leaps rather than slow and incremental transition steps, with a median time from autocracy to democracy of 2.4 years, and overnight in the reverse direction. Our results show that autocracy and democracy have acted as peaks in an evolutionary landscape of possible modes of institutional arrangements. Only scarcely have there been slow incremental transitions. We discuss our results in relation to the application of phylogenetic comparative methods in cultural evolution and point out that the evolving unit in this system is the institutional arrangement, not the individual country which is instead better regarded as the ‘host’ for the political system

    Hawtreyan 'credit deadlock' or Keynesian 'liquidity trap'? Lessons for Japan from the great depression

    Get PDF
    This paper outlines the ideas of Ralph Hawtrey and Lauchlin Currie on the need for monetised fiscal deficit spending in 1930s USA to combat the deep depression into which the economy had been allowed to sink. In such exceptional circumstances of 'credit deadlock' in which banks were afraid to lend and households and business afraid to borrow, the deadlock could best be broken through the spending of new money into circulation via large fiscal deficits. This complementarity of fiscal and monetary policy was shown to be essential, and as such indicates the potential power of monetary policy - in contrast to the Keynesian "liquidity trap" view that it is powerless This lesson was not learned by the Japanese authorities in their response to the asset price collapse of 1991-92, resulting in a lost decade as ballooning fiscal deficits were neutralised throughout the 1990s by unhelpfully tight monetary policy with the Bank of Japan refusing to monetise the deficits

    Design and Deploying Tools to ‘Actively Engaging Nature’: The My Naturewatch Project as an Agent for Engagement

    Get PDF
    ‘Shifting Baseline Syndrome’ is highly apparent in the context of generational shifts in work and life patterns that reduce interaction with and knowledge of the natural world, and therefore expectations of it. This is exacerbated by changes in the natural world itself due to climate change, biodiversity decline and a range of anthropogenic factors. Distributed and accessible technologies, and grass roots approaches provide fresh opportunities for interactions, which enable active engagement in ecological scenarios. The My NatureWatch project uses digital devices to collect visual content about UK wildlife, promoting ‘active engagements with nature’. The project embodies Inclusive Design in the Digital Age, as the activity; engages a wide demographic community, can be used by all, provided user led agency and produced methodological design lessons. The article frames My Naturewatch as an agent for active designed engagements with nature. The research objective is to comprehend ‘how to design tools for positive nature engagement’ holding value for; (1) academic communities as validated methodologies (2) the public through access to enabling technologies, content and knowledge (3) industry in the form of new; experiences, engagements and commerce. The approach is specifically designed to yield insights from a multitude of engagements, through the deployment of accessible, lowcost products. Project reporting documents the benefits, pitfalls and opportunities in the aforementioned engagement uncovered through design-led approaches. Insights are gathered from public/community facing workshops, wildlife experts, ecologists, economists, educators and wildlife NGO’s. The engagement methodologies are compared highlighting which initiative yielded ‘Active Engagement with Nature’

    Exhaustive Sampling of Docking Poses Reveals Binding Hypotheses for Propafenone Type Inhibitors of P-Glycoprotein

    Get PDF
    Overexpression of the xenotoxin transporter P-glycoprotein (P-gp) represents one major reason for the development of multidrug resistance (MDR), leading to the failure of antibiotic and cancer therapies. Inhibitors of P-gp have thus been advocated as promising candidates for overcoming the problem of MDR. However, due to lack of a high-resolution structure the concrete mode of interaction of both substrates and inhibitors is still not known. Therefore, structure-based design studies have to rely on protein homology models. In order to identify binding hypotheses for propafenone-type P-gp inhibitors, five different propafenone derivatives with known structure-activity relationship (SAR) pattern were docked into homology models of the apo and the nucleotide-bound conformation of the transporter. To circumvent the uncertainty of scoring functions, we exhaustively sampled the pose space and analyzed the poses by combining information retrieved from SAR studies with common scaffold clustering. The results suggest propafenone binding at the transmembrane helices 5, 6, 7 and 8 in both models, with the amino acid residue Y307 playing a crucial role. The identified binding site in the non-energized state is overlapping with, but not identical to, known binding areas of cyclic P-gp inhibitors and verapamil. These findings support the idea of several small binding sites forming one large binding cavity. Furthermore, the binding hypotheses for both catalytic states were analyzed and showed only small differences in their protein-ligand interaction fingerprints, which indicates only small movements of the ligand during the catalytic cycle

    Low potency toxins reveal dense interaction networks in metabolism

    Get PDF
    Background The chemicals of metabolism are constructed of a small set of atoms and bonds. This may be because chemical structures outside the chemical space in which life operates are incompatible with biochemistry, or because mechanisms to make or utilize such excluded structures has not evolved. In this paper I address the extent to which biochemistry is restricted to a small fraction of the chemical space of possible chemicals, a restricted subset that I call Biochemical Space. I explore evidence that this restriction is at least in part due to selection again specific structures, and suggest a mechanism by which this occurs. Results Chemicals that contain structures that our outside Biochemical Space (UnBiological groups) are more likely to be toxic to a wide range of organisms, even though they have no specifically toxic groups and no obvious mechanism of toxicity. This correlation of UnBiological with toxicity is stronger for low potency (millimolar) toxins. I relate this to the observation that most chemicals interact with many biological structures at low millimolar toxicity. I hypothesise that life has to select its components not only to have a specific set of functions but also to avoid interactions with all the other components of life that might degrade their function. Conclusions The chemistry of life has to form a dense, self-consistent network of chemical structures, and cannot easily be arbitrarily extended. The toxicity of arbitrary chemicals is a reflection of the disruption to that network occasioned by trying to insert a chemical into it without also selecting all the other components to tolerate that chemical. This suggests new ways to test for the toxicity of chemicals, and that engineering organisms to make high concentrations of materials such as chemical precursors or fuels may require more substantial engineering than just of the synthetic pathways involved

    Early influences on cardiovascular and renal development

    Get PDF
    The hypothesis that a developmental component plays a role in subsequent disease initially arose from epidemiological studies relating birth size to both risk factors for cardiovascular disease and actual cardiovascular disease prevalence in later life. The findings that small size at birth is associated with an increased risk of cardiovascular disease have led to concerns about the effect size and the causality of the associations. However, recent studies have overcome most methodological flaws and suggested small effect sizes for these associations for the individual, but an potential important effect size on a population level. Various mechanisms underlying these associations have been hypothesized, including fetal undernutrition, genetic susceptibility and postnatal accelerated growth. The specific adverse exposures in fetal and early postnatal life leading to cardiovascular disease in adult life are not yet fully understood. Current studies suggest that both environmental and genetic factors in various periods of life may underlie the complex associations of fetal growth retardation and low birth weight with cardiovascular disease in later life. To estimate the population effect size and to identify the underlying mechanisms, well-designed epidemiological studies are needed. This review is focused on specific adverse fetal exposures, cardiovascular adaptations and perspectives for new studies. Copyrigh
    corecore