1,878 research outputs found

    A 'resource allocator' for transcription based on a highly fragmented T7 RNA polymerase

    Get PDF
    Synthetic genetic systems share resources with the host, including machinery for transcription and translation. Phage RNA polymerases (RNAPs) decouple transcription from the host and generate high expression. However, they can exhibit toxicity and lack accessory proteins (σ factors and activators) that enable switching between different promoters and modulation of activity. Here, we show that T7 RNAP (883 amino acids) can be divided into four fragments that have to be co‐expressed to function. The DNA‐binding loop is encoded in a C‐terminal 285‐aa ‘σ fragment’, and fragments with different specificity can direct the remaining 601‐aa ‘core fragment’ to different promoters. Using these parts, we have built a resource allocator that sets the core fragment concentration, which is then shared by multiple σ fragments. Adjusting the concentration of the core fragment sets the maximum transcriptional capacity available to a synthetic system. Further, positive and negative regulation is implemented using a 67‐aa N‐terminal ‘α fragment’ and a null (inactivated) σ fragment, respectively. The α fragment can be fused to recombinant proteins to make promoters responsive to their levels. These parts provide a toolbox to allocate transcriptional resources via different schemes, which we demonstrate by building a system which adjusts promoter activity to compensate for the difference in copy number of two plasmids.United States. Office of Naval Research (N00014‐13‐1‐0074)National Institutes of Health (U.S.) (5R01GM095765)National Science Foundation (U.S.) (Synthetic Biology Engineering Research Center (SA5284‐11210))United States. Dept. of Defense (National Defense Science and Engineering Graduate Fellowship (NDSEG) Program))Hertz Foundation (Fellowship

    Laparoscopic Bladder-Preserving Surgery for Enterovesical Fistula Complicated with Benign Gastrointestinal Disease

    Get PDF
    Enterovesical fistula (EVF) is a relatively uncommon condition that is associated with severe morbidity. Minimally invasive and organ-preserving surgery should be performed in the case of EVF caused by benign diseases. We applied laparoscopic bladder-preserving surgery (LBPS) for EVF caused by benign gastrointestinal disease. Here, we report a surgical technique for LBPS. Patient and instrument port positioning are similar to those used in laparoscopic colorectal surgery. Dissection around the fistula is performed along the intestine as distant from the bladder as possible. If there is sufficient area around the intestinal portion of the fistula, it is isolated and resected using a linear stapler. If this approach is not possible, the intestinal fistula is sharply dissected as far away from the bladder as possible. LBPS for EVF was performed in 4 patients and included 3 direct sharp dissections and 1 stapling dissection. Three of the 4 patients did not require any further treatment for the bladder, and all procedures were feasibly accomplished under laparoscopic conditions. In conclusion, LBPS is feasible in cases of EVF caused by benign gastrointestinal disease, and we suggest that it should be the first choice of intervention in such cases

    Spatial patterns of the tau pathology in progressive supranuclear palsy

    Get PDF
    Progressive supranuclear palsy (PSP) is characterized neuropathologically by neuronal loss, gliosis, and the presence of tau-immunoreactive neuronal and glial cell inclusions affecting subcortical and some cortical regions. The objectives of this study were to determine (1) the spatial patterns of the tau-immunoreactive pathology, viz., neurofibrillary tangles (NFT), oligodendroglial inclusions (GI), tufted astrocytes (TA), and Alzheimer's disease-type neuritic plaques (NP) in PSP and (2) to investigate the spatial correlations between the histological features. Post-mortem material of cortical and subcortical regions of eight PSP cases was studied. Spatial pattern analysis was applied to the NFT, GI, TA, NP, abnormally enlarged neurons (EN), surviving neurons, and glial cells. NFT, GI, and TA were distributed either at random or in regularly distributed clusters. The EN and NP were mainly randomly distributed. Clustering of NFT and EN was more frequent in the cortex and subcortical regions, respectively. Variations in NFT density were not spatially correlated with the densities of either GI or TA, but were positively correlated with the densities of EN and surviving neurons in some regions. (1) NFT were the most widespread tau-immunoreactive pathology in PSP being distributed randomly in subcortical regions and in regular clusters in cortical regions, (2) GI and TA were more localized and exhibited a regular pattern of clustering in subcortical regions, and (3) neuronal and glial cell pathologies were not spatially correlated. © 2012 Springer-Verlag

    Probing ultrafast carrier dynamics and nonlinear absorption and refraction in core-shell silicon nanowires

    Full text link
    We investigate the relaxation dynamics of photogenerated carriers in silicon nanowires consisting of a crystalline core and a surrounding amorphous shell, using femtosecond time-resolved differential reflectivity and transmission spectroscopy at photon energies of 3.15 eV and 1.57 eV. The complex behavior of the differential transmission and reflectivity transients is the mixed contributions from the crystalline core and the amorphous silicon on the nanowire surface and the substrate where competing effects of state filling and photoinduced absorption govern the carrier dynamics. Faster relaxation rates are observed on increasing the photo-generated carrier density. Independent experimental results on crystalline silicon-on-sapphire help us in separating the contributions from the carrier dynamics in crystalline core and the amorphous regions in the nanowire samples. Further, single beam z-scan nonlinear transmission experiments at 1.57 eV in both open and close aperture configurations yield two-photon absorption coefficient \betabeta (~3 cm/GW) and nonlinear refraction coefficient \gammagamma (-2.5x10^-4 cm2/GW).Comment: 6 pages, 6 figure

    Feller Processes: The Next Generation in Modeling. Brownian Motion, L\'evy Processes and Beyond

    Get PDF
    We present a simple construction method for Feller processes and a framework for the generation of sample paths of Feller processes. The construction is based on state space dependent mixing of L\'evy processes. Brownian Motion is one of the most frequently used continuous time Markov processes in applications. In recent years also L\'evy processes, of which Brownian Motion is a special case, have become increasingly popular. L\'evy processes are spatially homogeneous, but empirical data often suggest the use of spatially inhomogeneous processes. Thus it seems necessary to go to the next level of generalization: Feller processes. These include L\'evy processes and in particular Brownian motion as special cases but allow spatial inhomogeneities. Many properties of Feller processes are known, but proving the very existence is, in general, very technical. Moreover, an applicable framework for the generation of sample paths of a Feller process was missing. We explain, with practitioners in mind, how to overcome both of these obstacles. In particular our simulation technique allows to apply Monte Carlo methods to Feller processes.Comment: 22 pages, including 4 figures and 8 pages of source code for the generation of sample paths of Feller processe

    Male reproductive health and environmental xenoestrogens

    Get PDF
    EHP is a publication of the U.S. government. Publication of EHP lies in the public domain and is therefore without copyright. Research articles from EHP may be used freely; however, articles from the News section of EHP may contain photographs or figures copyrighted by other commercial organizations and individuals that may not be used without obtaining prior approval from both the EHP editors and the holder of the copyright. Use of any materials published in EHP should be acknowledged (for example, "Reproduced with permission from Environmental Health Perspectives") and a reference provided for the article from which the material was reproduced.Male reproductive health has deteriorated in many countries during the last few decades. In the 1990s, declining semen quality has been reported from Belgium, Denmark, France, and Great Britain. The incidence of testicular cancer has increased during the same time incidences of hypospadias and cryptorchidism also appear to be increasing. Similar reproductive problems occur in many wildlife species. There are marked geographic differences in the prevalence of male reproductive disorders. While the reasons for these differences are currently unknown, both clinical and laboratory research suggest that the adverse changes may be inter-related and have a common origin in fetal life or childhood. Exposure of the male fetus to supranormal levels of estrogens, such as diethlylstilbestrol, can result in the above-mentioned reproductive defects. The growing number of reports demonstrating that common environmental contaminants and natural factors possess estrogenic activity presents the working hypothesis that the adverse trends in male reproductive health may be, at least in part, associated with exposure to estrogenic or other hormonally active (e.g., antiandrogenic) environmental chemicals during fetal and childhood development. An extensive research program is needed to understand the extent of the problem, its underlying etiology, and the development of a strategy for prevention and intervention.Supported by EU Contract BMH4-CT96-0314

    The secreted triose phosphate isomerase of Brugia malayi is required to sustain microfilaria production in vivo

    Get PDF
    Human lymphatic filariasis is a major tropical disease transmitted through mosquito vectors which take up microfilarial larvae from the blood of infected subjects. Microfilariae are produced by long-lived adult parasites, which also release a suite of excretory-secretory products that have recently been subject to in-depth proteomic analysis. Surprisingly, the most abundant secreted protein of adult Brugia malayi is triose phosphate isomerase (TPI), a glycolytic enzyme usually associated with the cytosol. We now show that while TPI is a prominent target of the antibody response to infection, there is little antibody-mediated inhibition of catalytic activity by polyclonal sera. We generated a panel of twenty-three anti-TPI monoclonal antibodies and found only two were able to block TPI enzymatic activity. Immunisation of jirds with B. malayi TPI, or mice with the homologous protein from the rodent filaria Litomosoides sigmodontis, failed to induce neutralising antibodies or protective immunity. In contrast, passive transfer of neutralising monoclonal antibody to mice prior to implantation with adult B. malayi resulted in 60–70% reductions in microfilarial levels in vivo and both oocyte and microfilarial production by individual adult females. The loss of fecundity was accompanied by reduced IFNγ expression by CD4+ T cells and a higher proportion of macrophages at the site of infection. Thus, enzymatically active TPI plays an important role in the transmission cycle of B. malayi filarial parasites and is identified as a potential target for immunological and pharmacological intervention against filarial infections

    Postoperative Electroencephalogram for Follow up of Pediatric Moyamoya Disease

    Get PDF
    It is well known that the electroencephalographic finding in patients with moyamoya disease demonstrates the characteristic "re-build up" phenomenon a few minutes after hyperventilation. To evaluate the usefulness of an electroencephalogram (EEG) in the postoperative management of children with moyamoya disease, we studied the presence or absence of improvement in the clinical, single photon emission computed tomography (SPECT) and EEG findings, before and after surgery. Twenty-two patients, who underwent indirect revascularization surgery for moyamoya disease, were included in our study. Clinical improvement was assessed as the disappearance or decrease of a transient ischemic attack or headache. The findings on the EEG and SPECT were considered improved when the re-build up phenomenon was absent and when there was improvement in the cerebrovascular reserve as a result of the acetazolamide challenge test. The statistical correlation analysis for both clinical and EEG improvement were consistent (kappa value=0.409, p<0.05). However, the result from the clinical and SPECT improvement as well as that from EEG and SPECT improvement were not statistically significant. Our results suggest that EEG can be used as a noninvasive and simple follow-up test for moyamoya disease after indirect revascularization surgery if the hyperventilation procedure is effectively performed during EEG recording

    Recombination-induced suppression of cell division following P1-mediated generalized transduction in Klebsiella aerogenes

    Full text link
    Klebsiella aerogenes recombinants resulting from bacteriophage P1-mediated generalized transduction failed to increase in number for approximately six generations after transduction. Nevertheless these recombinants continued to grow and became sensitive to penicillin after a transient resistance, suggesting that the cells were growing as long, non-dividing filaments. When filamentous cells were isolated from transduced cultures by gradient centrifugation, recombinants were 1000-fold more frequent among the filaments than among the normal-sized cells. The suppression of cell-division lasted for six generations whether markers near the origin ( gln, ilv ) or terminus ( his, trp ) of chromosome replication were used, despite a 50-fold difference in transduction frequencies for these markers. The suppression of cell division was a host response to recombination rather than to P1 invasion since cells lysogenized by P1 in these same experiments showed only a short (two generation) suppression of cell division. We speculate that the suppression of cell-division is an SOS response triggered by the degraded DNA not incorporated in the final recombinant. We demonstrate that both the filamentation and the transient penicillin resistance of recombinant cells can be exploited to enrich greatly for recombinants, raising transduction frequencies to as high as 10 -3 .Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47551/1/438_2004_Article_BF00337815.pd
    corecore