295 research outputs found

    Automated hippocampal segmentation in 3D MRI using random undersampling with boosting algorithm

    Get PDF
    The automated identification of brain structure in Magnetic Resonance Imaging is very important both in neuroscience research and as a possible clinical diagnostic tool. In this study, a novel strategy for fully automated hippocampal segmentation in MRI is presented. It is based on a supervised algorithm, called RUSBoost, which combines data random undersampling with a boosting algorithm. RUSBoost is an algorithm specifically designed for imbalanced classification, suitable for large data sets because it uses random undersampling of the majority class. The RUSBoost performances were compared with those of ADABoost, Random Forest and the publicly available brain segmentation package, FreeSurfer. This study was conducted on a data set of 50 T1-weighted structural brain images. The RUSBoost-based segmentation tool achieved the best results with a Dice’s index of (Formula presented.) (Formula presented.) for the left (right) brain hemisphere. An independent data set of 50 T1-weighted structural brain scans was used for an independent validation of the fully trained strategies. Again the RUSBoost segmentations compared favorably with manual segmentations with the highest performances among the four tools. Moreover, the Pearson correlation coefficient between hippocampal volumes computed by manual and RUSBoost segmentations was 0.83 (0.82) for left (right) side, statistically significant, and higher than those computed by Adaboost, Random Forest and FreeSurfer. The proposed method may be suitable for accurate, robust and statistically significant segmentations of hippocampi

    Anatomical connectivity patterns predict face selectivity in the fusiform gyrus

    Get PDF
    A fundamental assumption in neuroscience is that brain structure determines function. Accordingly, functionally distinct regions of cortex should be structurally distinct in their connections to other areas. We tested this hypothesis in relation to face selectivity in the fusiform gyrus. By using only structural connectivity, as measured through diffusion-weighted imaging, we were able to predict functional activation to faces in the fusiform gyrus. These predictions outperformed two control models and a standard group-average benchmark. The structure–function relationship discovered from the initial participants was highly robust in predicting activation in a second group of participants, despite differences in acquisition parameters and stimuli. This approach can thus reliably estimate activation in participants who cannot perform functional imaging tasks and is an alternative to group-activation maps. Additionally, we identified cortical regions whose connectivity was highly influential in predicting face selectivity within the fusiform, suggesting a possible mechanistic architecture underlying face processing in humans.United States. Public Health Service (DA023427)National Institute of Mental Health (U.S.) (F32 MH084488)National Eye Institute (T32 EY013935)Poitras FoundationSimons FoundationEllison Medical Foundatio

    Multimodal surface-based morphometry reveals diffuse cortical atrophy in traumatic brain injury.

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with traumatic brain injury (TBI) often present with significant cognitive deficits without corresponding evidence of cortical damage on neuroradiological examinations. One explanation for this puzzling observation is that the diffuse cortical abnormalities that characterize TBI are difficult to detect with standard imaging procedures. Here we investigated a patient with severe TBI-related cognitive impairments whose scan was interpreted as normal by a board-certified radiologist in order to determine if quantitative neuroimaging could detect cortical abnormalities not evident with standard neuroimaging procedures.</p> <p>Methods</p> <p>Cortical abnormalities were quantified using multimodal surfaced-based morphometry (MSBM) that statistically combined information from high-resolution structural MRI and diffusion tensor imaging (DTI). Normal values of cortical anatomy and cortical and pericortical DTI properties were quantified in a population of 43 healthy control subjects. Corresponding measures from the patient were obtained in two independent imaging sessions. These data were quantified using both the average values for each lobe and the measurements from each point on the cortical surface. The results were statistically analyzed as z-scores from the mean with a p < 0.05 criterion, corrected for multiple comparisons. False positive rates were verified by comparing the data from each control subject with the data from the remaining control population using identical statistical procedures.</p> <p>Results</p> <p>The TBI patient showed significant regional abnormalities in cortical thickness, gray matter diffusivity and pericortical white matter integrity that replicated across imaging sessions. Consistent with the patient's impaired performance on neuropsychological tests of executive function, cortical abnormalities were most pronounced in the frontal lobes.</p> <p>Conclusions</p> <p>MSBM is a promising tool for detecting subtle cortical abnormalities with high sensitivity and selectivity. MSBM may be particularly useful in evaluating cortical structure in TBI and other neurological conditions that produce diffuse abnormalities in both cortical structure and tissue properties.</p

    The Brain Atlas Concordance Problem: Quantitative Comparison of Anatomical Parcellations

    Get PDF
    Many neuroscientific reports reference discrete macro-anatomical regions of the brain which were delineated according to a brain atlas or parcellation protocol. Currently, however, no widely accepted standards exist for partitioning the cortex and subcortical structures, or for assigning labels to the resulting regions, and many procedures are being actively used. Previous attempts to reconcile neuroanatomical nomenclatures have been largely qualitative, focusing on the development of thesauri or simple semantic mappings between terms. Here we take a fundamentally different approach, discounting the names of regions and instead comparing their definitions as spatial entities in an effort to provide more precise quantitative mappings between anatomical entities as defined by different atlases. We develop an analytical framework for studying this brain atlas concordance problem, and apply these methods in a comparison of eight diverse labeling methods used by the neuroimaging community. These analyses result in conditional probabilities that enable mapping between regions across atlases, which also form the input to graph-based methods for extracting higher-order relationships between sets of regions and to procedures for assessing the global similarity between different parcellations of the same brain. At a global scale, the overall results demonstrate a considerable lack of concordance between available parcellation schemes, falling within chance levels for some atlas pairs. At a finer level, this study reveals spatial relationships between sets of defined regions that are not obviously apparent; these are of high potential interest to researchers faced with the challenge of comparing results that were based on these different anatomical models, particularly when coordinate-based data are not available. The complexity of the spatial overlap patterns revealed points to problems for attempts to reconcile anatomical parcellations and nomenclatures using strictly qualitative and/or categorical methods. Detailed results from this study are made available via an interactive web site at http://obart.info

    A Wide and Deep Neural Network for Survival Analysis from Anatomical Shape and Tabular Clinical Data

    Full text link
    We introduce a wide and deep neural network for prediction of progression from patients with mild cognitive impairment to Alzheimer's disease. Information from anatomical shape and tabular clinical data (demographics, biomarkers) are fused in a single neural network. The network is invariant to shape transformations and avoids the need to identify point correspondences between shapes. To account for right censored time-to-event data, i.e., when it is only known that a patient did not develop Alzheimer's disease up to a particular time point, we employ a loss commonly used in survival analysis. Our network is trained end-to-end to combine information from a patient's hippocampus shape and clinical biomarkers. Our experiments on data from the Alzheimer's Disease Neuroimaging Initiative demonstrate that our proposed model is able to learn a shape descriptor that augments clinical biomarkers and outperforms a deep neural network on shape alone and a linear model on common clinical biomarkers.Comment: Data and Machine Learning Advances with Multiple Views Workshop, ECML-PKDD 201

    How the serotonin transporter 5-HTTLPR polymorphism influences amygdala function: the roles of in vivo serotonin transporter expression and amygdala structure

    Get PDF
    The serotonin transporter-linked promoter region (5-HTTLPR) polymorphism of the serotonin transporter gene is associated with amygdala response during negative emotion. The aim of this study was to investigate whether this genotype effect on amygdala function is mediated by current serotonin transporter (5-HTT) levels or rather by genetically induced influences during neurodevelopment, shaping brain structure. A total of 54 healthy subjects underwent functional and structural magnetic resonance imaging, [11C]DASB positron emission tomography and 5-HTTLPR genotyping to analyze the interrelationships between amygdala activation during processing of unpleasant stimuli, 5-HTTLPR genotype, amygdala volumes and 5-HTT levels in the midbrain and in other brain regions. In line with previous research, carriers of the short allele (S) showed increased amygdala activation. Path analysis demonstrated that this genotype effect was not procured by current 5-HTT availability but by amygdala structure, with smaller amygdala volumes in the S than in the LL genotype, as well as smaller volumes being associated with increased amygdala activation. Our findings stress the role of genetic effects during neurodevelopment

    A network linking scene perception and spatial memory systems in posterior cerebral cortex

    Get PDF
    The neural systems supporting scene-perception and spatial-memory systems of the human brain are well-described. But how do these neural systems interact? Here, using fine-grained individual-subject fMRI, we report three cortical areas of the human brain, each lying immediately anterior to a region of the scene perception network in posterior cerebral cortex, that selectively activate when recalling familiar real-world locations. Despite their close proximity to the scene-perception areas, network analyses show that these regions constitute a distinct functional network that interfaces with spatial memory systems during naturalistic scene understanding. These “place-memory areas” offer a new framework for understanding how the brain implements memory-guided visual behaviors, including navigation

    Multishot versus Single-Shot Pulse Sequences in Very High Field fMRI: A Comparison Using Retinotopic Mapping

    Get PDF
    High-resolution functional MRI is a leading application for very high field (7 Tesla) human MR imaging. Though higher field strengths promise improvements in signal-to-noise ratios (SNR) and BOLD contrast relative to fMRI at 3 Tesla, these benefits may be partially offset by accompanying increases in geometric distortion and other off-resonance effects. Such effects may be especially pronounced with the single-shot EPI pulse sequences typically used for fMRI at standard field strengths. As an alternative, one might consider multishot pulse sequences, which may lead to somewhat lower temporal SNR than standard EPI, but which are also often substantially less susceptible to off-resonance effects. Here we consider retinotopic mapping of human visual cortex as a practical test case by which to compare examples of these sequence types for high-resolution fMRI at 7 Tesla. We performed polar angle retinotopic mapping at each of 3 isotropic resolutions (2.0, 1.7, and 1.1 mm) using both accelerated single-shot 2D EPI and accelerated multishot 3D gradient-echo pulse sequences. We found that single-shot EPI indeed led to greater temporal SNR and contrast-to-noise ratios (CNR) than the multishot sequences. However, additional distortion correction in postprocessing was required in order to fully realize these advantages, particularly at higher resolutions. The retinotopic maps produced by both sequence types were qualitatively comparable, and showed equivalent test/retest reliability. Thus, when surface-based analyses are planned, or in other circumstances where geometric distortion is of particular concern, multishot pulse sequences could provide a viable alternative to single-shot EPI
    corecore