76 research outputs found

    The Cyst-Theca Relationship Of The Dinoflagellate Cyst Trinovantedinium Pallidifulvum, With Erection Of Protoperidinium Lousianensis Sp Nov And Their Phylogenetic Position Within The Conica Group

    Get PDF
    We establish the cyst-theca relationship of the dinoflagellate cyst species Trinovantedinium pallidifulvum Matsuoka 1987 based on germination experiments of specimens isolated from the Gulf of Mexico. We show that the motile stage is a new species, designated as Protoperidinium louisianensis. We also determine its phylogenetic position based on single-cell polymerase chain reaction (PCR) of a single cell germinated from the Gulf of Mexico cysts. To further refine the phylogeny, we determined the large subunit (LSU) sequence through single-cell PCR of the cyst Selenopemphix undulata isolated from Brentwood Bay (Saanich Inlet, BC, Canada). The phylogeny shows that P. louisianensis is closest to P. shanghaiense, the motile stage of T. applanatum, and is consistent with the monophyly of the genus Trinovantedinium. Selenopemphix undulata belongs to a different clade than Selenopemphix quanta (alleged cyst of P. conicum), suggesting that the genus Selenopemphix is polyphyletic. Trinovantedinium pallidifulvum is widely distributed with occurrences in the Gulf of Mexico, the North Atlantic, the northeast Pacific and southeast Asia. In addition, we illustrate the two other extant species, Trinovantedinium applanatum and Trinovantedinium variabile, and two morphotypes of Trinovantedinium. Geochemical analyses of the cyst wall of T. pallidifulvum indicate the presence of amide groups in agreement with other heterotrophic dinoflagellate species, although the cyst wall of T. pallidifulvum also includes some unique features

    Phospholipase D signaling: orchestration by PIP2 and small GTPases

    Get PDF
    Hydrolysis of phosphatidylcholine by phospholipase D (PLD) leads to the generation of the versatile lipid second messenger, phosphatidic acid (PA), which is involved in fundamental cellular processes, including membrane trafficking, actin cytoskeleton remodeling, cell proliferation and cell survival. PLD activity can be dramatically stimulated by a large number of cell surface receptors and is elaborately regulated by intracellular factors, including protein kinase C isoforms, small GTPases of the ARF, Rho and Ras families and, particularly, by the phosphoinositide, phosphatidylinositol 4,5-bisphosphate (PIP2). PIP2 is well known as substrate for the generation of second messengers by phospholipase C, but is now also understood to recruit and/or activate a variety of actin regulatory proteins, ion channels and other signaling proteins, including PLD, by direct interaction. The synthesis of PIP2 by phosphoinositide 5-kinase (PIP5K) isoforms is tightly regulated by small GTPases and, interestingly, by PA as well, and the concerted formation of PIP2 and PA has been shown to mediate receptor-regulated cellular events. This review highlights the regulation of PLD by membrane receptors, and describes how the close encounter of PLD and PIP5K isoforms with small GTPases permits the execution of specific cellular functions

    The life and scientific work of William R. Evitt (1923-2009)

    Get PDF
    Occasionally (and fortunately), circumstances and timing combine to allow an individual, almost singlehandedly, to generate a paradigm shift in his or her chosen field of inquiry. William R. (‘Bill’) Evitt (1923-2009) was such a person. During his career as a palaeontologist, Bill Evitt made lasting and profound contributions to the study of both dinoflagellates and trilobites. He had a distinguished, long and varied career, researching first trilobites and techniques in palaeontology before moving on to marine palynomorphs. Bill is undoubtedly best known for his work on dinoflagellates, especially their resting cysts. He worked at three major US universities and spent a highly significant period in the oil industry. Bill's early profound interest in the natural sciences was actively encouraged both by his parents and at school. His alma mater was Johns Hopkins University where, commencing in 1940, he studied chemistry and geology as an undergraduate. He quickly developed a strong vocation in the earth sciences, and became fascinated by the fossiliferous Lower Palaeozoic strata of the northwestern United States. Bill commenced a PhD project on silicified Middle Ordovician trilobites from Virginia in 1943. His doctoral research was interrupted by military service during World War II; Bill served as an aerial photograph interpreter in China in 1944 and 1945, and received the Bronze Star for his excellent work. Upon demobilisation from the US Army Air Force, he resumed work on his PhD and was given significant teaching duties at Johns Hopkins, which he thoroughly enjoyed. He accepted his first professional position, as an instructor in sedimentary geology, at the University of Rochester in late 1948. Here Bill supervised his first two graduate students, and shared a great cameraderie with a highly motivated student body which largely comprised World War II veterans. At Rochester, Bill continued his trilobite research, and was the editor of the Journal of Paleontology between 1953 and 1956. Seeking a new challenge, he joined the Carter Oil Company in Tulsa, Oklahoma, during 1956. This brought about an irrevocable realignment of his research interests from trilobites to marine palynology. He undertook basic research on aquatic palynomorphs in a very well-resourced laboratory under the direction of one of his most influential mentors, William S. ‘Bill’ Hoffmeister. Bill Evitt visited the influential European palynologists Georges Deflandre and Alfred Eisenack during late 1959 and, while in Tulsa, first developed several groundbreaking hypotheses. He soon realised that the distinctive morphology of certain fossil dinoflagellates, notably the archaeopyle, meant that they represent the resting cyst stage of the life cycle. The archaeopyle clearly allows the excystment of the cell contents, and comprises one or more plate areas. Bill also concluded that spine-bearing palynomorphs, then called hystrichospheres, could be divided into two groups. The largely Palaeozoic spine-bearing palynomorphs are of uncertain biological affinity, and these were termed acritarchs. Moreover, he determined that unequivocal dinoflagellate cysts are all Mesozoic or younger, and that the fossil record of dinoflagellates is highly selective. Bill was always an academic at heart and he joined Stanford University in 1962, where he remained until retiring in 1988. Bill enjoyed getting back into teaching after his six years in industry. During his 26-year tenure at Stanford, Bill continued to revolutionise our understanding of dinoflagellate cysts. He produced many highly influential papers and two major textbooks. The highlights include defining the acritarchs and comprehensively documenting the archaeopyle, together with highly detailed work on the morphology of Nannoceratopsis and Palaeoperidinium pyrophorum using the scanning electron microscope. Bill supervised 11 graduate students while at Stanford University. He organised the Penrose Conference on Modern and Fossil Dinoflagellates in 1978, which was so successful that similar meetings have been held about every four years since that inaugural symposium. Bill also taught many short courses on dinoflagellate cysts aimed at the professional community. Unlike many eminent geologists, Bill actually retired from actively working in the earth sciences. His full retirement was in 1988; after this he worked on only a small number of dinoflagellate cyst projects, including an extensive paper on the genus Palaeoperidinium

    The John Williams Index of Palaeopalynology

    Get PDF
    The John Williams Index of Palaeopalynology (JWIP) is the result of the lifetime's work of Dr John E. Williams. Housed at the Department of Palaeontology of The Natural History Museum (NHM) in London, the JWIP is publically available and provides probably the most comprehensive fully cross-referenced catalogue on palaeopalynology in the world. It has 23,350 references to fossil palynomorph genera or species as of February 2012. Since its inception in 1971, every publication in the collection referring to a fossil palynomorph genus or species has been critiqued by John E. Williams. Each item is given an accession number and appropriately referenced within the JWIP using index cards which are sorted alphabetically. Once added to the main reference subindex, further entries are completed for four themed subindexes. The first three of these are sets of cards on the three major palynomorph groups (acritarchs/dinoflagellate cysts, chitinozoa and pollen/spores), 26 stratigraphical intervals and 17 geographical areas. The fourth themed subindex is where each palynomorph taxon has a card (or cards) listing all the records of that species in the literature within six categories (acritarchs, dinoflagellate cysts, chitinozoa, fungal spores, pollen/spores and miscellaneous). Due to the sustained and meticulous recording of data since 1971, users can therefore search the database by major palynomorph group, species, age and/or geographical region. The comprehensive and cross-referenced nature of the JWIP means that researchers can readily identify key publications on, for example, specific palynomorph types over a particular interval in a prescribed area. The JWIP is currently entirely analogue, but the NHM is currently evaluating potential strategies for digitisation

    A review of the dinoflagellates and their evolution from fossils to modern

    No full text
    Molecular clock and biogeochemical evidence indicate that the dinoflagellate lineage diverged at around 650 Ma. Unequivocal dinoflagellate cysts/zygotes appeared during the Triassic. These biotas were badly affected by the end-Triassic extinction and recovery from this was relatively slow. During the early Middle Jurassic, the family Gonyaulacaceae underwent an explosive diversification event and taxonomic richness steadily increased throughout the rest of the Jurassic. The entire Cretaceous also recorded increases in diversity. This trend reversed during the Oligocene, probably caused by global cooling. Marine cyst-forming peridiniaceans declined substantially through the Oligocene and Neogene, but protoperidiniaceans continued to diversify. Modern taxa, as evidenced by the molecular tree, comprise three major clades: the first two are composed largely of parasitic forms, marine alveolates of unknown identity and the Syndiniales; free-living dinoflagellates form the third clade, which diverges rapidly and bears short branch lengths with no real support for branching order. This suggests that morphological divergence preceded molecular divergence because, as the fossil record indicates, major groups appeared at different ages. Unique features of the dinoflagellates helped the group take on a predominant role in the marine phytoplankton. Living in marine or fresh water, dinoflagellates have demonstrated innovative capacities that have enabled them to live among the phytoplankton or benthos as autotrophic, heterotrophic, mixotrophic free-living organisms or symbiotic and/or as parasitic forms

    Evolution of sea‐surface conditions on the northwestern Greenland margin during the Holocene

    No full text
    Reconstructions of sea‐surface conditions during the Holocene were achieved on two sediment cores from the northwest Greenland margin (AMD14‐204) and Kane Basin (AMD14‐Kane2B) based on dinoflagellate cyst assemblages. On the northwest Greenland margin, sea‐surface conditions were cold with an extended sea ice cover prior to 7750 cal a bp associated with the end of the deglaciation. A major change occurred around ca. 7750 cal a bp with enhanced influence of warmer water from the West Greenland Current, and optimal sea‐surface conditions were observed around 6000 cal a bp. After 3350 cal a bp, results reflect the establishment of the modern assemblages. In the Kane Basin, sea‐surface conditions were not favourable for dinocyst productivity prior to 7880 cal a bp, as the basin was still largely covered by ice. The presence of warmer water is recorded between 7880 and 7200 cal a bp and the highest primary productivity between 5200 and 2100 cal a bp, but sea‐surface conditions remained cold with an extended sea ice cover throughout the Holocene. Overall, the results from this study revealed the strong influence of meltwater discharges and oceanic current variability on the sea‐surface conditions. -- Keywords : Baffin Bay ; dinoflagellate cysts ; Kane Basin ; Melville Bay ; sea‐surface conditions
    corecore