333 research outputs found

    CRANKITE: a fast polypeptide backbone conformation sampler

    Get PDF
    Background: CRANKITE is a suite of programs for simulating backbone conformations of polypeptides and proteins. The core of the suite is an efficient Metropolis Monte Carlo sampler of backbone conformations in continuous three-dimensional space in atomic details. Methods: In contrast to other programs relying on local Metropolis moves in the space of dihedral angles, our sampler utilizes local crankshaft rotations of rigid peptide bonds in Cartesian space. Results: The sampler allows fast simulation and analysis of secondary structure formation and conformational changes for proteins of average length

    SSMap: A new UniProt-PDB mapping resource for the curation of structural-related information in the UniProt/Swiss-Prot Knowledgebase

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Sequences and structures provide valuable complementary information on protein features and functions. However, it is not always straightforward for users to gather information concurrently from the sequence and structure levels. The UniProt knowledgebase (UniProtKB) strives to help users on this undertaking by providing complete cross-references to Protein Data Bank (PDB) as well as coherent feature annotation using available structural information. In this study, SSMap – a new UniProt-PDB residue-residue level mapping – was generated. The primary objective of this mapping is not only to facilitate the two tasks mentioned above, but also to palliate a number of shortcomings of existent mappings. SSMap is the first isoform sequence-specific mapping resource and is up-to-date for UniProtKB annotation tasks. The method employed by SSMap differs from the other mapping resources in that it stresses on the correct reconstruction of the PDB sequence from structures, and on the correct attribution of a UniProtKB entry to each PDB chain by using a series of post-processing steps.</p> <p>Results</p> <p>SSMap was compared to other existing mapping resources in terms of the correctness of the attribution of PDB chains to UniProtKB entries, and of the quality of the pairwise alignments supporting the residue-residue mapping. It was found that SSMap shared about 80% of the mappings with other mapping sources. New and alternative mappings proposed by SSMap were mostly good as assessed by manual verification of data subsets. As for local pairwise alignments, it was shown that major discrepancies (both in terms of alignment lengths and boundaries), when present, were often due to differences in methodologies used for the mappings.</p> <p>Conclusion</p> <p>SSMap provides an independent, good quality UniProt-PDB mapping. The systematic comparison conducted in this study allows the further identification of general problems in UniProt-PDB mappings so that both the coverage and the quality of the mappings can be systematically improved for the benefit of the scientific community. SSMap mapping is currently used to provide PDB cross-references in UniProtKB.</p

    Structural and functional characterization of Pseudomonas aeruginosa CupB chaperones

    Get PDF
    Pseudomonas aeruginosa, an important human pathogen, is estimated to be responsible for,10% of nosocomial infections worldwide. The pathogenesis of P. aeruginosa starts from its colonization in the damaged tissue or medical devices (e. g. catheters, prothesis and implanted heart valve etc.) facilitated by several extracellular adhesive factors including fimbrial pili. Several clusters containing fimbrial genes have been previously identified on the P. aeruginosa chromosome and named cup [1]. The assembly of the CupB pili is thought to be coordinated by two chaperones, CupB2 and CupB4. However, due to the lack of structural and biochemical data, their chaperone activities remain speculative. In this study, we report the 2.5 A crystal structure of P. aeruginosa CupB2. Based on the structure, we further tested the binding specificity of CupB2 and CupB4 towards CupB1 (the presumed major pilus subunit) and CupB6 (the putative adhesin) using limited trypsin digestion and strep-tactin pull-down assay. The structural and biochemical data suggest that CupB2 and CupB4 might play different, but not redundant, roles in CupB secretion. CupB2 is likely to be the chaperone of CupB1, and CupB4 could be the chaperone of CupB4:CupB5:CupB6, in which the interaction of CupB4 and CupB6 might be mediated via CupB5

    Female chacma baboons form strong, equitable, and enduring social bonds

    Get PDF
    Analyses of the pattern of associations, social interactions, coalitions, and aggression among chacma baboons (Papio hamadryas ursinus) in the Okavango Delta of Botswana over a 16-year period indicate that adult females form close, equitable, supportive, and enduring social relationships. They show strong and stable preferences for close kin, particularly their own mothers and daughters. Females also form strong attachments to unrelated females who are close to their own age and who are likely to be paternal half-sisters. Although absolute rates of aggression among kin are as high as rates of aggression among nonkin, females are more tolerant of close relatives than they are of others with whom they have comparable amounts of contact. These findings complement previous work which indicates that the strength of social bonds enhances the fitness of females in this population and support findings about the structure and function of social bonds in other primate groups

    Paternity alone does not predict long-term investment in juveniles by male baboons

    Get PDF
    Adult male chacma baboons (Papio hamadryas ursinus) form preferential associations, or friendships, with particular lactating females. Males exhibit high levels of affiliative contact with their friends’ infants and defend them from potentially infanticidal attacks (Palombit et al. 1997). Little is known about males’ associations with juveniles once they have passed the period of infanticidal risk. We conducted an observational, experimental, and genetic study of adult male and juvenile chacma baboons in the Moremi Reserve, Botswana. We identified preferential associations between males and juveniles and used behavioral data and a playback experiment to explore whether those associations have potential fitness benefits for juveniles. We determined whether males preferentially invest in care of their own offspring. We also determined how often males invest in care of their former friends’ offspring. The majority of juveniles exhibited preferential associations with one or two males, who had almost always been their mother’s friend during infancy. However, in only a subset of these relationships was the male the actual father, in part because many fathers died or disappeared before their offspring were weaned. Male caretakers intervened on behalf of their juvenile associates in social conflicts more often than they intervened on behalf of unconnected juveniles, and they did not appear to differentiate between genetic offspring and unrelated associates. Playbacks of juveniles’ distress calls elicited a stronger response from their caretakers than from control males. Chacma males may provide care to unrelated offspring of former friends because the costs associated with such care are low compared with the potentially high fitness costs of refusing aid to a juvenile who is a possible offspring

    ACL reconstruction with unicondylar replacement in knee with functional instability and osteoarthritis

    Get PDF
    Severe symptomatic osteoarthritis in young and active patients with pre-existing deficiency of the anterior cruciate ligament and severe functionally instability is a difficult subgroup to manage. There is considerable debate regarding management of young patients with isolated unicompartment osteoarthritis and concomitant ACL deficiency. A retrospective analysis of was done in 9 patients with symptomatic osteoarthritis with ACL deficiencies and functional instability that were treated with unicompartment knee arthroplasty and ACL reconstruction between April 2002 and June 2005. The average arc of flexion was 119° (range 85° to 135°) preoperatively and 125° (range 105° to 140°). There were no signs of instability during the follow up of patients. No patients in this group were reoperated. In this small series we have shown that instability can be corrected and pain relieved by this combined procedure

    Deuterium isotope effects on 15N backbone chemical shifts in proteins

    Get PDF
    Quantum mechanical calculations are presented that predict that one-bond deuterium isotope effects on the 15N chemical shift of backbone amides of proteins, 1Δ15N(D), are sensitive to backbone conformation and hydrogen bonding. A quantitative empirical model for 1Δ15N(D) including the backbone dihedral angles, Φ and Ψ, and the hydrogen bonding geometry is presented for glycine and amino acid residues with aliphatic side chains. The effect of hydrogen bonding is rationalized in part as an electric-field effect on the first derivative of the nuclear shielding with respect to N–H bond length. Another contributing factor is the effect of increased anharmonicity of the N–H stretching vibrational state upon hydrogen bonding, which results in an altered N–H/N–D equilibrium bond length ratio. The N–H stretching anharmonicity contribution falls off with the cosine of the N–H···O bond angle. For residues with uncharged side chains a very good prediction of isotope effects can be made. Thus, for proteins with known secondary structures, 1Δ15N(D) can provide insights into hydrogen bonding geometries

    Hybrid SPECT/CT for the assessment of a painful hip after uncemented total hip arthroplasty

    Get PDF
    Background The diagnosis of hip pain after total hip replacement (THR) represents a highly challenging question that is of increasing concern to orthopedic surgeons. This retrospective study assesses bone scintigraphy with Hybrid SPECT/CT for the diagnosis of painful THR in a selected cohort of patients. Methods Bone SPECT/CT datasets of 23 patients (mean age 68.9 years) with a painful hip after THR were evaluated. Selection of the patients required an inconclusive radiograph, normal serum levels of inflammatory parameters (CRP and ESR) or a negative aspiration of the hip joint prior to the examination. The standard of reference was established by an interdisciplinary adjudication-panel using all imaging data and clinical follow-up data (>12 month). Pathological and physiological uptake patterns were defined and applied. Results The cause of pain in this study group could be determined in 18 out of 23 cases. Reasons were aseptic loosening (n = 5), spine-related (n = 5), heterotopic ossification (n = 5), neuronal (n = 1), septic loosening (n = 1) and periprosthetic stress fracture (n = 1). In (n = 5) cases the cause of hip pain could not be identified. SPECT/CT imaging correctly identified the cause of pain in (n = 13) cases, in which the integrated CT-information led to the correct diagnosis in (n = 4) cases, mainly through superior anatomic correlation. Loosening was correctly assessed in all cases with a definite diagnosis. Conclusions SPECT/CT of THA reliably detects or rules out loosening and provides valuable information about heterotopic ossifications. Furthermore differential diagnoses may be detected with a whole-body scan and mechanical or osseous failure is covered by CT- imaging. SPECT/CT holds great potential for imaging-based assessment of painful prostheses

    Applying an Empirical Hydropathic Forcefield in Refinement May Improve Low-Resolution Protein X-Ray Crystal Structures

    Get PDF
    BACKGROUND: The quality of X-ray crystallographic models for biomacromolecules refined from data obtained at high-resolution is assured by the data itself. However, at low-resolution, >3.0 Å, additional information is supplied by a forcefield coupled with an associated refinement protocol. These resulting structures are often of lower quality and thus unsuitable for downstream activities like structure-based drug discovery. METHODOLOGY: An X-ray crystallography refinement protocol that enhances standard methodology by incorporating energy terms from the HINT (Hydropathic INTeractions) empirical forcefield is described. This protocol was tested by refining synthetic low-resolution structural data derived from 25 diverse high-resolution structures, and referencing the resulting models to these structures. The models were also evaluated with global structural quality metrics, e.g., Ramachandran score and MolProbity clashscore. Three additional structures, for which only low-resolution data are available, were also re-refined with this methodology. RESULTS: The enhanced refinement protocol is most beneficial for reflection data at resolutions of 3.0 Å or worse. At the low-resolution limit, ≥4.0 Å, the new protocol generated models with Cα positions that have RMSDs that are 0.18 Å more similar to the reference high-resolution structure, Ramachandran scores improved by 13%, and clashscores improved by 51%, all in comparison to models generated with the standard refinement protocol. The hydropathic forcefield terms are at least as effective as Coulombic electrostatic terms in maintaining polar interaction networks, and significantly more effective in maintaining hydrophobic networks, as synthetic resolution is decremented. Even at resolutions ≥4.0 Å, these latter networks are generally native-like, as measured with a hydropathic interactions scoring tool

    Innovations in total knee replacement: new trends in operative treatment and changes in peri-operative management

    Get PDF
    The human knee joint can sustain damage due to injury, or more usually osteoarthritis, to one, two or all three of the knee compartments: the medial femorotibial, the lateral femorotibial and the patellofemoral compartments. When pain associated with this damage is unmanageable using nonsurgical techniques, knee replacement surgery might be the most appropriate course of action. This procedure aims to restore a pain-free, fully functional and durable knee joint. Total knee replacement is a well-established treatment modality, and more recently, partial knee replacement—more commonly known as bi- or unicompartmental knee replacement—has seen resurgence in interest and popularity. Combined with the use of minimally invasive surgery (MIS) techniques, gender-specific prosthetics and computer-assisted navigation systems, orthopaedic surgeons are now able to offer patients knee replacement procedures that are associated with (1) minimal risks during and after surgery by avoiding fat embolism, reducing blood loss and minimising soft tissue disruption; (2) smaller incisions; (3) faster and less painful rehabilitation; (4) reduced hospital stay and faster return to normal activities of daily living; (5) an improved range of motion; (6) less requirement for analgesics; and (7) a durable, well-aligned, highly functional knee. With the ongoing advancements in surgical technique, medical technology and prosthesis design, knee replacement surgery is constantly evolving. This review provides a personal account of the recent innovations that have been made, with a particular emphasis on the potential use of MIS techniques combined with computer-assisted navigation systems to treat younger, more physically active patients with resurfacing partial/total implant knee arthroplasty
    • …
    corecore