13 research outputs found

    Mono- versus polydrug abuse patterns among publicly funded clients

    Get PDF
    To examine patterns of mono- versus polydrug abuse, data were obtained from intake records of 69,891 admissions to publicly funded treatment programs in Tennessee between 1998 and 2004. While descriptive statistics were employed to report frequency and patterns of mono- and polydrug abuse by demographic variables and by study years, bivariate logistic regression was applied to assess the probability of being a mono- or polydrug abuser for a number of demographic variables. The researchers found that during the study period 51.3% of admissions reported monodrug abuse and 48.7% reported polydrug abuse. Alcohol, cocaine, and marijuana were the most commonly abused substances, both alone and in combination. Odds ratio favored polydrug abuse for all but one drug category–other drugs. Gender did not affect drug abuse patterns; however, admissions for African Americans and those living in urban areas exhibited higher probabilities of polydrug abuse. Age group also appeared to affect drug abuse patterns, with higher odds of monodrug abuse among minors and adults over 45 years old. The discernable prevalence of polydrug abuse suggests a need for developing effective prevention strategies and treatment plans specific to polydrug abuse

    Fibroblast growth factor 21 reflects liver fat accumulation and dysregulation of signalling pathways in the liver of C57BL/6J mice

    Get PDF
    Fibroblast growth factor 21 (Fgf21) has emerged as a potential plasma marker to diagnose non-alcoholic fatty liver disease (NAFLD). To study the molecular processes underlying the association of plasma Fgf21 with NAFLD, we explored the liver transcriptome data of a mild NAFLD model of aging C57BL/6J mice at 12, 24, and 28 months of age. The plasma Fgf21 level significantly correlated with intrahepatic triglyceride content. At the molecular level, elevated plasma Fgf21 levels were associated with dysregulated metabolic and cancerrelated pathways. The up-regulated Fgf21 levels in NAFLD were implied to be a protective response against the NAFLD-induced adverse effects, e.g. lipotoxicity, oxidative stress and endoplasmic reticulum stress. An in vivo PPARα challenge demonstrated the dysregulation of PPARα signalling in the presence of NAFLD, which resulted in a stochastically increasing hepatic expression of Fgf21. Notably, elevated plasma Fgf21 was associated with declining expression of Klb, Fgf21’s crucial co-receptor, which suggests a resistance to Fgf21. Therefore, although liver fat accumulation is a benign stage of NAFLD, the elevated plasma Fgf21 likely indicated vulnerability to metabolic stressors that may contribute towards progression to end-stage NAFLD. In conclusion, plasma levels of Fgf21 reflect liver fat accumulation and dysregulation of metabolic pathways in the liver

    Characterization of lamin Mutation Phenotypes in Drosophila and Comparison to Human Laminopathies

    Get PDF
    Lamins are intermediate filament proteins that make up the nuclear lamina, a matrix underlying the nuclear membrane in all metazoan cells that is important for nuclear form and function. Vertebrate A-type lamins are expressed in differentiating cells, while B-type lamins are expressed ubiquitously. Drosophila has two lamin genes that are expressed in A- and B-type patterns, and it is assumed that similarly expressed lamins perform similar functions. However, Drosophila and vertebrate lamins are not orthologous, and their expression patterns evolved independently. It is therefore of interest to examine the effects of mutations in lamin genes. Mutations in the mammalian lamin A/C gene cause a range of diseases, collectively called laminopathies, that include muscular dystrophies and premature aging disorders. We compared the sequences of lamin genes from different species, and we have characterized larval and adult phenotypes in Drosophila bearing mutations in the lam gene that is expressed in the B-type pattern. Larvae move less and show subtle muscle defects, and surviving lam adults are flightless and walk like aged wild-type flies, suggesting that lam phenotypes might result from neuromuscular defects, premature aging, or both. The resemblance of Drosophila lam phenotypes to human laminopathies suggests that some lamin functions may be performed by differently expressed genes in flies and mammals. Such still-unknown functions thus would not be dependent on lamin gene expression pattern, suggesting the presence of other lamin functions that are expression dependent. Our results illustrate a complex interplay between lamin gene expression and function through evolution
    corecore