46 research outputs found

    Alternative regression models to assess increase in childhood BMI

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Body mass index (BMI) data usually have skewed distributions, for which common statistical modeling approaches such as simple linear or logistic regression have limitations.</p> <p>Methods</p> <p>Different regression approaches to predict childhood BMI by goodness-of-fit measures and means of interpretation were compared including generalized linear models (GLMs), quantile regression and Generalized Additive Models for Location, Scale and Shape (GAMLSS). We analyzed data of 4967 children participating in the school entry health examination in Bavaria, Germany, from 2001 to 2002. TV watching, meal frequency, breastfeeding, smoking in pregnancy, maternal obesity, parental social class and weight gain in the first 2 years of life were considered as risk factors for obesity.</p> <p>Results</p> <p>GAMLSS showed a much better fit regarding the estimation of risk factors effects on transformed and untransformed BMI data than common GLMs with respect to the generalized Akaike information criterion. In comparison with GAMLSS, quantile regression allowed for additional interpretation of prespecified distribution quantiles, such as quantiles referring to overweight or obesity. The variables TV watching, maternal BMI and weight gain in the first 2 years were directly, and meal frequency was inversely significantly associated with body composition in any model type examined. In contrast, smoking in pregnancy was not directly, and breastfeeding and parental social class were not inversely significantly associated with body composition in GLM models, but in GAMLSS and partly in quantile regression models. Risk factor specific BMI percentile curves could be estimated from GAMLSS and quantile regression models.</p> <p>Conclusion</p> <p>GAMLSS and quantile regression seem to be more appropriate than common GLMs for risk factor modeling of BMI data.</p

    Prediction intervals for future BMI values of individual children - a non-parametric approach by quantile boosting

    Get PDF
    Background: The construction of prediction intervals (PIs) for future body mass index (BMI) values of individual children based on a recent German birth cohort study with n = 2007 children is problematic for standard parametric approaches, as the BMI distribution in childhood is typically skewed depending on age. Methods: We avoid distributional assumptions by directly modelling the borders of PIs by additive quantile regression, estimated by boosting. We point out the concept of conditional coverage to prove the accuracy of PIs. As conditional coverage can hardly be evaluated in practical applications, we conduct a simulation study before fitting child- and covariate-specific PIs for future BMI values and BMI patterns for the present data. Results: The results of our simulation study suggest that PIs fitted by quantile boosting cover future observations with the predefined coverage probability and outperform the benchmark approach. For the prediction of future BMI values, quantile boosting automatically selects informative covariates and adapts to the age-specific skewness of the BMI distribution. The lengths of the estimated PIs are child-specific and increase, as expected, with the age of the child. Conclusions: Quantile boosting is a promising approach to construct PIs with correct conditional coverage in a non-parametric way. It is in particular suitable for the prediction of BMI patterns depending on covariates, since it provides an interpretable predictor structure, inherent variable selection properties and can even account for longitudinal data structures

    Genetic scores to stratify risk of developing multiple islet autoantibodies and type 1 diabetes: A prospective study in children.

    Get PDF
    Around 0.3% of newborns will develop autoimmunity to pancreatic beta cells in childhood and subsequently develop type 1 diabetes before adulthood. Primary prevention of type 1 diabetes will require early intervention in genetically at-risk infants. The objective of this study was to determine to what extent genetic scores (two previous genetic scores and a merged genetic score) can improve the prediction of type 1 diabetes.This article is freely available via Open Access. Click on the Additional Link above to access the full-text via the publisher's site
    corecore