77 research outputs found

    Influence of reaction time and synthesis temperature on the physical properties of ZnO nanoparticles synthesized by the hydrothermal method

    Get PDF
    Influence of synthesis temperature and reaction time on the structural and optical properties of ZnO nanoparticles synthesized by the hydrothermal method was investigated using X-ray diffraction (XRD), high resolution transmission electron microscopy (HR-TEM), energy-dispersive X-ray, Fourier transform infra-red spectroscopy, and UV–visible and fluorescence spectroscopy. The XRD pattern and HR-TEM images confirmed the presence of crystalline hexagonal wurtzite ZnO nanoparticles with average crystallite size in the range 30–40 nm. Their energy gap determined by fluorescence was found to depend on the synthesis temperature and reaction time with values in the range 2.90–3.78 eV. Thermal analysis, thermogravimetric and the differential scanning calorimetry were used to study the thermal reactions and weight loss with heat of the prepared ZnO nanoparticles

    Potential geographic distribution of Hantavirus reservoirs in Brazil

    Get PDF
    Hantavirus cardiopulmonary syndrome is an emerging zoonosis in Brazil. Human infections occur via inhalation of aerosolized viral particles from excreta of infected wild rodents. Necromys lasiurus and Oligoryzomys nigripes appear to be the main reservoirs of hantavirus in the Atlantic Forest and Cerrado biomes. We estimated and compared ecological niches of the two rodent species, and analyzed environmental factors influencing their occurrence, to understand the geography of hantavirus transmission. N. lasiurus showed a wide potential distribution in Brazil, in the Cerrado, Caatinga, and Atlantic Forest biomes. Highest climate suitability for O. nigripes was observed along the Brazilian Atlantic coast. Maximum temperature in the warmest months and annual precipitation were the variables that most influence the distributions of N. lasiurus and O. nigripes, respectively. Models based on occurrences of infected rodents estimated a broader area of risk for hantavirus transmission in southeastern and southern Brazil, coinciding with the distribution of human cases of hantavirus cardiopulmonary syndrome. We found no demonstrable environmental differences among occurrence sites for the rodents and for human cases of hantavirus. However, areas of northern and northeastern Brazil are also apparently suitable for the two species, without broad coincidence with human cases. Modeling of niches and distributions of rodent reservoirs indicates potential for transmission of hantavirus across virtually all of Brazil outside the Amazon Basin

    Comparative study on cellular entry of incinerated ancient gold particles (Swarna Bhasma) and chemically synthesized gold particles

    Get PDF
    Gold nanoparticles (AuNPs) are used for a number of imaging and therapeutic applications in east and western part of the world. For thousands of years, the traditional Indian Ayurvedic approach to healing involves the use of incinerated gold ash, prepared with a variety of plant extracts and minerals depending on the region. Here, we describe the characterization of incinerated gold particles (IAuPs) in HeLa (human cells derived from cervical cancer) and HFF-1 (human foreskin fibroblast cells) in comparison to synthesized citrate-capped gold nanoparticles (AuNPs). We found that while individual IAuP crystallites are around 60 nm in size, they form large aggregates with a mean diameter of 4711.7 nm, some of which can enter cells. Fewer cells appeared to have IAuPs compared to AuNPs, although neither type of particle was toxic to cells. Imaging studies revealed that IAuPs were in vesicles, cytosol, or in the nucleus. We found that their nuclear accumulation likely occurred after nuclear envelope breakdown during cell division. We also found that larger IAuPs entered cells via macropinocytosis, while smaller particles entered via clathrin-dependent receptor-mediated endocytosis

    Lower glycolysis carries a higher flux than any biochemically possible alternative

    Get PDF
    The universality of many pathways of core metabolism suggests a strong role for evolutionary selection, but it remains unclear whether existing pathways have been selected from a large or small set of biochemical possibilities. To address this question, we construct "in silico" all possible biochemically feasible alternatives to the trunk pathway of glycolysis and gluconeogenesis, one of the most highly conserved pathways in metabolism. We show that, even though a large number of alternative pathways exist, the alternatives carry lower flux than the real pathway under typical physiological conditions. Alternative pathways that could potentially carry higher flux often lead to infeasible intermediate metabolite concentrations. We also find that if physiological conditions were different, different pathways could outperform those found in nature. Our results demonstrate how the rules of biochemistry restrict the alternatives that are open to evolution, and suggest that the existing trunk pathway of glycolysis and gluconeogenesis represents a maximal flux solution.Comment: 9 pages, 4 figure

    Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1.

    Get PDF
    In 2008, we published the first set of guidelines for standardizing research in autophagy. Since then, this topic has received increasing attention, and many scientists have entered the field. Our knowledge base and relevant new technologies have also been expanding. Thus, it is important to formulate on a regular basis updated guidelines for monitoring autophagy in different organisms. Despite numerous reviews, there continues to be confusion regarding acceptable methods to evaluate autophagy, especially in multicellular eukaryotes. Here, we present a set of guidelines for investigators to select and interpret methods to examine autophagy and related processes, and for reviewers to provide realistic and reasonable critiques of reports that are focused on these processes. These guidelines are not meant to be a dogmatic set of rules, because the appropriateness of any assay largely depends on the question being asked and the system being used. Moreover, no individual assay is perfect for every situation, calling for the use of multiple techniques to properly monitor autophagy in each experimental setting. Finally, several core components of the autophagy machinery have been implicated in distinct autophagic processes (canonical and noncanonical autophagy), implying that genetic approaches to block autophagy should rely on targeting two or more autophagy-related genes that ideally participate in distinct steps of the pathway. Along similar lines, because multiple proteins involved in autophagy also regulate other cellular pathways including apoptosis, not all of them can be used as a specific marker for bona fide autophagic responses. Here, we critically discuss current methods of assessing autophagy and the information they can, or cannot, provide. Our ultimate goal is to encourage intellectual and technical innovation in the field

    Upward Altitudinal Shifts in Habitat Suitability of Mountain Vipers since the Last Glacial Maximum

    Get PDF
    We determined the effects of past and future climate changes on the distribution of the Montivipera raddei species complex (MRC) that contains rare and endangered viper species limited to Iran, Turkey and Armenia. We also investigated the current distribution of MRC to locate unidentified isolated populations as well as to evaluate the effectiveness of the current network of protected areas for their conservation. Present distribution of MRC was modeled based on ecological variables and model performance was evaluated by field visits. Some individuals at the newly identified populations showed uncommon morphological characteristics. The distribution map of MRC derived through modeling was then compared with the distribution of protected areas in the region. We estimated the effectiveness of the current protected area network to be 10%, which would be sufficient for conserving this group of species, provided adequate management policies and practices are employed. We further modeled the distribution of MRC in the past (21,000 years ago) and under two scenarios in the future (to 2070). These models indicated that climatic changes probably have been responsible for an upward shift in suitable habitats of MRC since the Last Glacial Maximum, leading to isolation of allopatric populations. Distribution will probably become much more restricted in the future as a result of the current rate of global warming. We conclude that climate change most likely played a major role in determining the distribution pattern of MRC, restricting allopatric populations to mountaintops due to habitat alterations. This long-term isolation has facilitated unique local adaptations among MRC populations, which requires further investigation. The suitable habitat patches identified through modeling constitute optimized solutions for inclusion in the network of protected areas in the region
    • 

    corecore