103 research outputs found
Multiple Transitions to Chaos in a Damped Parametrically Forced Pendulum
We study bifurcations associated with stability of the lowest stationary
point (SP) of a damped parametrically forced pendulum by varying
(the natural frequency of the pendulum) and (the amplitude of the external
driving force). As is increased, the SP will restabilize after its
instability, destabilize again, and so {\it ad infinitum} for any given
. Its destabilizations (restabilizations) occur via alternating
supercritical (subcritical) period-doubling bifurcations (PDB's) and pitchfork
bifurcations, except the first destabilization at which a supercritical or
subcritical bifurcation takes place depending on the value of . For
each case of the supercritical destabilizations, an infinite sequence of PDB's
follows and leads to chaos. Consequently, an infinite series of period-doubling
transitions to chaos appears with increasing . The critical behaviors at the
transition points are also discussed.Comment: 20 pages + 7 figures (available upon request), RevTex 3.
Quantum mechanical analysis of the equilateral triangle billiard: periodic orbit theory and wave packet revivals
Using the fact that the energy eigenstates of the equilateral triangle
infinite well (or billiard) are available in closed form, we examine the
connections between the energy eigenvalue spectrum and the classical closed
paths in this geometry, using both periodic orbit theory and the short-term
semi-classical behavior of wave packets. We also discuss wave packet revivals
and show that there are exact revivals, for all wave packets, at times given by
where and are the length of one side
and the mass of the point particle respectively. We find additional cases of
exact revivals with shorter revival times for zero-momentum wave packets
initially located at special symmetry points inside the billiard. Finally, we
discuss simple variations on the equilateral
() triangle, such as the half equilateral
() triangle and other `foldings', which have
related energy spectra and revival structures.Comment: 34 pages, 9 embedded .eps figure
Supermassive Binaries and Extragalactic Jets
Some quasars show Doppler shifted broad emission line peaks. I give new
statistics of the occurrence of these peaks and show that, while the most
spectacular cases are in quasars with strong radio jets inclined to the line of
sight, they are also almost as common in radio-quiet quasars. Theories of the
origin of the peaks are reviewed and it is argued that the displaced peaks are
most likely produced by the supermassive binary model. The separations of the
peaks in the 3C 390.3-type objects are consistent with orientation-dependent
"unified models" of quasar activity. If the supermassive binary model is
correct, all members of "the jet set" (astrophysical objects showing jets)
could be binaries.Comment: 31 pages, PostScript, missing figure is in ApJ 464, L105 (see
http://www.aas.org/ApJ/v464n2/5736/5736.html
The Physics of Star Cluster Formation and Evolution
© 2020 Springer-Verlag. The final publication is available at Springer via https://doi.org/10.1007/s11214-020-00689-4.Star clusters form in dense, hierarchically collapsing gas clouds. Bulk kinetic energy is transformed to turbulence with stars forming from cores fed by filaments. In the most compact regions, stellar feedback is least effective in removing the gas and stars may form very efficiently. These are also the regions where, in high-mass clusters, ejecta from some kind of high-mass stars are effectively captured during the formation phase of some of the low mass stars and effectively channeled into the latter to form multiple populations. Star formation epochs in star clusters are generally set by gas flows that determine the abundance of gas in the cluster. We argue that there is likely only one star formation epoch after which clusters remain essentially clear of gas by cluster winds. Collisional dynamics is important in this phase leading to core collapse, expansion and eventual dispersion of every cluster. We review recent developments in the field with a focus on theoretical work.Peer reviewe
Global, regional, and national burden of disorders affecting the nervous system, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021
Background: Disorders affecting the nervous system are diverse and include neurodevelopmental disorders, late-life neurodegeneration, and newly emergent conditions, such as cognitive impairment following COVID-19. Previous publications from the Global Burden of Disease, Injuries, and Risk Factor Study estimated the burden of 15 neurological conditions in 2015 and 2016, but these analyses did not include neurodevelopmental disorders, as defined by the International Classification of Diseases (ICD)-11, or a subset of cases of congenital, neonatal, and infectious conditions that cause neurological damage. Here, we estimate nervous system health loss caused by 37 unique conditions and their associated risk factors globally, regionally, and nationally from 1990 to 2021. Methods: We estimated mortality, prevalence, years lived with disability (YLDs), years of life lost (YLLs), and disability-adjusted life-years (DALYs), with corresponding 95% uncertainty intervals (UIs), by age and sex in 204 countries and territories, from 1990 to 2021. We included morbidity and deaths due to neurological conditions, for which health loss is directly due to damage to the CNS or peripheral nervous system. We also isolated neurological health loss from conditions for which nervous system morbidity is a consequence, but not the primary feature, including a subset of congenital conditions (ie, chromosomal anomalies and congenital birth defects), neonatal conditions (ie, jaundice, preterm birth, and sepsis), infectious diseases (ie, COVID-19, cystic echinococcosis, malaria, syphilis, and Zika virus disease), and diabetic neuropathy. By conducting a sequela-level analysis of the health outcomes for these conditions, only cases where nervous system damage occurred were included, and YLDs were recalculated to isolate the non-fatal burden directly attributable to nervous system health loss. A comorbidity correction was used to calculate total prevalence of all conditions that affect the nervous system combined. Findings: Globally, the 37 conditions affecting the nervous system were collectively ranked as the leading group cause of DALYs in 2021 (443 million, 95% UI 378–521), affecting 3·40 billion (3·20–3·62) individuals (43·1%, 40·5–45·9 of the global population); global DALY counts attributed to these conditions increased by 18·2% (8·7–26·7) between 1990 and 2021. Age-standardised rates of deaths per 100 000 people attributed to these conditions decreased from 1990 to 2021 by 33·6% (27·6–38·8), and age-standardised rates of DALYs attributed to these conditions decreased by 27·0% (21·5–32·4). Age-standardised prevalence was almost stable, with a change of 1·5% (0·7–2·4). The ten conditions with the highest age-standardised DALYs in 2021 were stroke, neonatal encephalopathy, migraine, Alzheimer's disease and other dementias, diabetic neuropathy, meningitis, epilepsy, neurological complications due to preterm birth, autism spectrum disorder, and nervous system cancer. Interpretation: As the leading cause of overall disease burden in the world, with increasing global DALY counts, effective prevention, treatment, and rehabilitation strategies for disorders affecting the nervous system are needed. Funding: Bill & Melinda Gates Foundation
Recommended from our members
Radioactive ion beam research at LLNL
In this paper we discuss efforts underway at LLNL to develop the technology for the measurement of proton and alpha-particle reactions with unstable nuclei which are necessary for understanding the nucleosynthesis and energy generation in hot hydrogen-burning environments. 16 refs., 5 figs
Laser-induced forward transfer of focussed ion beam pre-machined donors
In this paper we report femtosecond laser-induced forward transfer (LIFT) of pre-machined donor films. 1 µm thick zinc oxide (ZnO) films were first machined using the focussed ion beam (FIB) technique up to a depth of 0.8 µm. Debris-free micro-pellets of ZnO with extremely smooth edges and surface uniformity were subsequently printed from these pre-machined donors using LIFT. Printing results of non-machined ZnO donor films and films deposited on top of a polymer dynamic release layer (DRL) are also presented for comparison, indicating the superior quality of transfer achievable and utility of this pre-machining technique
Recommended from our members
Some nuclear data needs in astrophysics
In this paper we discuss a number of astrophysical environments and how improved nuclear data could facilitate a better understanding of them. One area of interest includes proton and alpha-particle reactions with unstable nuclei which are necessary for understanding the nucleosynthesis and energy generation in hot hydrogen-burning environments. Efforts underway at LLNL and elsewhere to develop the technology for the measurement of these reaction rates are discussed. Heavy-element nucleosynthesis in the late stages of red-giant stars and supernovae requires a complete network of neutron capture rates and beta-decay rates for nuclei near and far from stability. Experimental and theoretical efforts at LLNL to supply the input data and to model the nucleosynthetic environments will be outlined. Suggestions are made as to which nuclear data are most critical for the various scenarios. 42 refs., 11 figs., 1 tab
- …