482 research outputs found
Evidence of slow-light effects from rotary drag of structured beams
Self-pumped slow light, typically observed within laser gain media, is created by an intense pump field. By observing the rotation of a structured laser beam upon transmission through a spinning ruby window, we show that the slowing effect applies equally to both the dark and bright regions of the incident beam. This result is incompatible with slow-light models based on simple pulse-reshaping arising from optical bleaching. Instead, the slow-light effect arises from the long upper-state lifetime of the ruby and a saturation of the absorption, from which the Kramers–Kronig relation gives a highly dispersive phase index and a correspondingly high group index
Recommended from our members
Associations between sole ulcer, white line disease and digital dermatitis and the milk yield of 1824 dairy cows on 30 dairy cow farms in England and Wales from February 2003–November 2004
The milk yields of 1824 cows were used to investigate the effect of lesion-specific causes of lameness, based on farmer treatment and diagnosis of lame cows, on milk yield. A three level hierarchical model of repeated test day yields within cows within herds was used to investigate the impact of lesion-specific causes of lameness (sole ulcer, white line disease, digital dermatitis and other causes) on milk yield before and after treatment compared with unaffected cows. Cattle which developed sole ulcer (SU) and white line disease (WLD) were higher yielding cattle before they were diagnosed. Their milk production fell to below that of the mean of unaffected cows before diagnosis and remained low after diagnosis. In cattle which developed digital dermatitis (DD) there was no significant difference in milk yield before treatment and a slightly raised milk yield immediately after treatment. The estimated milk loss attributable to SU and WLD was approximately 570kg and 370kg respectively. These results highlight that specific types of lameness vary by herds and within herds they are associated with higher yielding cattle. Consequently lesion-specific lameness reduction programmes targeting the cow and farm specific causes of lameness might be more effective than generic recommendations. They also highlight the importance of milk loss when estimating the economic impact of SU and WLD on the farms profitability
Consistent energy barrier distributions in magnetic particle chains
We investigate long-time thermal activation behaviour in magnetic particle chains of variable length. Chains are modelled as Stoner–Wohlfarth particles coupled by dipolar interactions. Thermal activation is described as a hopping process over a multidimensional energy landscape using the discrete orientation model limit of the Landau–Lifshitz–Gilbert dynamics. The underlying master equation is solved by diagonalising the associated transition matrix, which allows the evaluation of distributions of time scales of intrinsic thermal activation modes and their energy representation. It is shown that as a result of the interaction dependence of these distributions, increasing the particle chain length can lead to acceleration or deceleration of the overall relaxation process depending on the initialisation procedure
The Landau–Lifshitz equation in atomistic models
The Landau–Lifshitz (LL) equation, originally proposed at the macrospin level, is increasingly used in Atomistic
Spin Dynamic (ASD) models. These models are based on a spin Hamiltonian featuring atomic spins of
fixed length, with the exchange introduced using the Heisenberg formalism. ASD models are proving a powerful
approach to the fundamental understanding of ultrafast magnetization dynamics, including the prediction of the
thermally induced magnetization switching phenomenon in which the magnetization is reversed using an ultrafast
laser pulse in the absence of an externally applied field. This paper outlines the ASD model approach and
considers the role and limitations of the LL equation in this context
Defect structures and torque on an elongated colloidal particle immersed in a liquid crystal host
Combining molecular dynamics and Monte Carlo simulation we study defect
structures around an elongated colloidal particle embedded in a nematic liquid
crystal host. By studying nematic ordering near the particle and the
disclination core region we are able to examine the defect core structure and
the difference between two simulation techniques. In addition, we also study
the torque on a particle tilted with respect to the director, and modification
of this torque when the particle is close to the cell wall
Three-body non-additive forces between spin-polarized alkali atoms
Three-body non-additive forces in systems of three spin-polarized alkali
atoms (Li, Na, K, Rb and Cs) are investigated using high-level ab initio
calculations. The non-additive forces are found to be large, especially near
the equilateral equilibrium geometries. For Li, they increase the three-atom
potential well depth by a factor of 4 and reduce the equilibrium interatomic
distance by 0.9 A. The non-additive forces originate principally from chemical
bonding arising from sp mixing effects.Comment: 4 pages, 3 figures (in 5 files
Failing boys and moral panics: perspectives on the underachievement debate
The paper re-examines the underachievement debate from the perspective of the ‘discourse of derision’ that surrounds much writing in this area. It considers the contradictions and inconsistencies which underpin much of the discourse – from a reinterpretation of examination scores, to the conflation of the concepts of ‘under’ and ‘low’ achievement and finally to the lack of consensus on a means of defining and measuring the term underachievement. In doing so, this paper suggests a more innovative approach for understanding, re-evaluating and perhaps rejecting the notion of underachievement
"Author! Author!" : Shakespeare and biography
Original article can be found at: http://www.informaworld.com/smpp/title~content=t714579626~db=all Copyright Informa / Taylor & Francis Group. DOI: 10.1080/17450910902764454Since 1996, not a year has passed without the publication of at least one Shakespeare biography. Yet for many years the place of the author in the practice of understanding literary works has been problematized, and even on occasions eliminated. Criticism reads the “works”, and may or may not refer to an author whose “life” contributed to their meaning. Biography seeks the author in the works, the personality that precedes the works and gives them their characteristic shape and meaning. But the form of literary biography addresses the unusual kind of “life” that puts itself into “works”, and this is particularly challenging where the “works” predominate massively over the salient facts of the “life”. This essay surveys the current terrain of Shakespeare biography, and considers the key questions raised by the medium: can we know anything of Shakespeare's “personality” from the facts of his life and the survival of his works? What is the status of the kind of speculation that inevitably plays a part in biographical reconstruction? Are biographers in the end telling us as much about themselves as they tell us about Shakespeare?Peer reviewe
Energy loss due to defect formation from 206Pb recoils in SuperCDMS germanium detectors
The Super Cryogenic Dark Matter Search experiment at the Soudan Underground Laboratory studied energy loss associated with defect formation in germanium crystals at mK temperatures using in situ 210Pb sources. We examine the spectrum of 206Pb nuclear recoils near its expected 103 keV endpoint energy and determine an energy loss of (6:08 ± 0:18)%, which we attribute to defect formation. From this result and using TRIM simulations, we extract the first experimentally determined average displacement threshold energy of 19.7+0.6−0.5 eV for germanium. This has implications for the analysis thresholds of future germanium-based dark matter searches
Enhancing the effectiveness of interdisciplinary mental health treatment teams
Mental health administrators often lack guidelines for promoting and evaluating the effectiveness of interdisciplinary clinical treatment teams. This article describes the use of a model of group effectiveness that elucidates several aspects of team effectiveness. Also discussed are how administrators can support such teams by reviewing their initial set-up, how the organization influences the team's productivity and longevity, and how team members can better understand one another's personal and professional frames of reference to improve mutual collaboration.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/44090/1/10488_2005_Article_BF02106536.pd
- …