951 research outputs found
The influence of non-imaging detector design on heralded ghost-imaging and ghost-diffraction examined using a triggered ICCD came
Ghost imaging and ghost diffraction can be realized by using the spatial correlations between signal and idler photons produced by spontaneous parametric down-conversion. If an object is placed in the signal (idler) path, the spatial correlations between the transmitted photons as measured by a single, non-imaging, âbucketâ detector and a scanning detector placed in the idler (signal) path can reveal either the image or diffraction pattern of the object, whereas neither detector signal on its own can. The details of the bucket detector, such as its collection area and numerical aperture, set the number of transverse modes supported by the system. For ghost imaging these details are less important, affecting mostly the sampling time required to produce the image. For ghost diffraction, however, the bucket detector must be filtered to a single, spatially coherent mode. We examine this difference in behavour by using either a multi-mode or single-mode fibre to define the detection aperture. Furthermore, instead of a scanning detector we use a heralded camera so that the image or diffraction pattern produced can be measured across the full field of view. The importance of a single mode detection in the observation of ghost diffraction is equivalent to the need within a classical diffraction experiment to illuminate the aperture with a spatially coherent mode
Evidence of slow-light effects from rotary drag of structured beams
Self-pumped slow light, typically observed within laser gain media, is created by an intense pump field. By observing the rotation of a structured laser beam upon transmission through a spinning ruby window, we show that the slowing effect applies equally to both the dark and bright regions of the incident beam. This result is incompatible with slow-light models based on simple pulse-reshaping arising from optical bleaching. Instead, the slow-light effect arises from the long upper-state lifetime of the ruby and a saturation of the absorption, from which the KramersâKronig relation gives a highly dispersive phase index and a correspondingly high group index
Magneto-optical rotation and cross-phase modulation via coherently driven tripod atoms
We study the interaction of a weak probe field, having two orthogonally
polarized components, with an optically dense medium of four-level atoms in a
tripod configuration. In the presence of a coherent driving laser,
electromagnetically induced transparency is attained in the medium,
dramatically enhancing its linear as well as nonlinear dispersion while
simultaneously suppressing the probe field absorption. We present the
semiclassical and fully quantum analysis of the system. We propose an
experimentally feasible setup that can induce large Faraday rotation of the
probe field polarization and therefore be used for ultra-sensitive optical
magnetometry. We then study the Kerr nonlinear coupling between the two
components of the probe, demonstrating a novel regime of symmetric, extremely
efficient cross-phase modulation, capable of fully entangling two single-photon
pulses. This scheme may thus pave the way to photon-based quantum information
applications, such as deterministic all-optical quantum computation, dense
coding and teleportation.Comment: Corrected typo
Accelerometers can measure total and activity-specific energy expenditures in free-ranging marine mammals only if linked to time-activity budgets
Peer reviewedPostprin
Lasers: The first fifty years
This year marks the 50th anniversary of the invention of the laser. The Optical Society of America is publishing this feature issue to celebrate this auspicious birthday. © 2010 Optical Society of America
The creation of large photon-number path entanglement conditioned on photodetection
Large photon-number path entanglement is an important resource for enhanced
precision measurements and quantum imaging. We present a general constructive
protocol to create any large photon number path-entangled state based on the
conditional detection of single photons. The influence of imperfect detectors
is considered and an asymptotic scaling law is derived.Comment: 6 pages, 4 figure
MaxEnt power spectrum estimation using the Fourier transform for irregularly sampled data applied to a record of stellar luminosity
The principle of maximum entropy is applied to the spectral analysis of a
data signal with general variance matrix and containing gaps in the record. The
role of the entropic regularizer is to prevent one from overestimating
structure in the spectrum when faced with imperfect data. Several arguments are
presented suggesting that the arbitrary prefactor should not be introduced to
the entropy term. The introduction of that factor is not required when a
continuous Poisson distribution is used for the amplitude coefficients. We
compare the formalism for when the variance of the data is known explicitly to
that for when the variance is known only to lie in some finite range. The
result of including the entropic measure factor is to suggest a spectrum
consistent with the variance of the data which has less structure than that
given by the forward transform. An application of the methodology to example
data is demonstrated.Comment: 15 pages, 13 figures, 1 table, major revision, final version,
Accepted for publication in Astrophysics & Space Scienc
Conditional linear-optical measurement schemes generate effective photon nonlinearities
We provide a general approach for the analysis of optical state evolution
under conditional measurement schemes, and identify the necessary and
sufficient conditions for such schemes to simulate unitary evolution on the
freely propagating modes. If such unitary evolution holds, an effective photon
nonlinearity can be identified. Our analysis extends to conditional measurement
schemes more general than those based solely on linear optics.Comment: 16 pages, 2 figure
Second Harmonic Generation for a Dilute Suspension of Coated Particles
We derive an expression for the effective second-harmonic coefficient of a
dilute suspension of coated spherical particles. It is assumed that the coating
material, but not the core or the host, has a nonlinear susceptibility for
second-harmonic generation (SHG). The resulting compact expression shows the
various factors affecting the effective SHG coefficient. The effective SHG per
unit volume of nonlinear coating material is found to be greatly enhanced at
certain frequencies, corresponding to the surface plasmon resonance of the
coated particles. Similar expression is also derived for a dilute suspension of
coated discs. For coating materials with third-harmonic (THG) coefficient,
results for the effective THG coefficients are given for the cases of coated
particles and coated discs.Comment: 11 pages, 3 figures; accepted for publication in Phys. Rev.
Solid-state laser system for laser cooling of Sodium
We demonstrate a frequency-stabilized, all-solid laser source at 589 nm with
up to 800 mW output power. The laser relies on sum-frequency generation from
two laser sources at 1064 nm and 1319 nm through a PPKTP crystal in a
doubly-resonant cavity. We obtain conversion efficiency as high as 2 W/W^2
after optimization of the cavity parameters. The output wavelength is tunable
over 60 GHz, which is sufficient to lock on the Sodium D2 line. The robustness,
beam quality, spectral narrowness and tunability of our source make it an
alternative to dye lasers for atomic physics experiments with Sodium atoms
- âŠ