795 research outputs found

    The influence of non-imaging detector design on heralded ghost-imaging and ghost-diffraction examined using a triggered ICCD came

    Get PDF
    Ghost imaging and ghost diffraction can be realized by using the spatial correlations between signal and idler photons produced by spontaneous parametric down-conversion. If an object is placed in the signal (idler) path, the spatial correlations between the transmitted photons as measured by a single, non-imaging, “bucket” detector and a scanning detector placed in the idler (signal) path can reveal either the image or diffraction pattern of the object, whereas neither detector signal on its own can. The details of the bucket detector, such as its collection area and numerical aperture, set the number of transverse modes supported by the system. For ghost imaging these details are less important, affecting mostly the sampling time required to produce the image. For ghost diffraction, however, the bucket detector must be filtered to a single, spatially coherent mode. We examine this difference in behavour by using either a multi-mode or single-mode fibre to define the detection aperture. Furthermore, instead of a scanning detector we use a heralded camera so that the image or diffraction pattern produced can be measured across the full field of view. The importance of a single mode detection in the observation of ghost diffraction is equivalent to the need within a classical diffraction experiment to illuminate the aperture with a spatially coherent mode

    Evidence of slow-light effects from rotary drag of structured beams

    Get PDF
    Self-pumped slow light, typically observed within laser gain media, is created by an intense pump field. By observing the rotation of a structured laser beam upon transmission through a spinning ruby window, we show that the slowing effect applies equally to both the dark and bright regions of the incident beam. This result is incompatible with slow-light models based on simple pulse-reshaping arising from optical bleaching. Instead, the slow-light effect arises from the long upper-state lifetime of the ruby and a saturation of the absorption, from which the Kramers–Kronig relation gives a highly dispersive phase index and a correspondingly high group index

    Magneto-optical rotation and cross-phase modulation via coherently driven tripod atoms

    Full text link
    We study the interaction of a weak probe field, having two orthogonally polarized components, with an optically dense medium of four-level atoms in a tripod configuration. In the presence of a coherent driving laser, electromagnetically induced transparency is attained in the medium, dramatically enhancing its linear as well as nonlinear dispersion while simultaneously suppressing the probe field absorption. We present the semiclassical and fully quantum analysis of the system. We propose an experimentally feasible setup that can induce large Faraday rotation of the probe field polarization and therefore be used for ultra-sensitive optical magnetometry. We then study the Kerr nonlinear coupling between the two components of the probe, demonstrating a novel regime of symmetric, extremely efficient cross-phase modulation, capable of fully entangling two single-photon pulses. This scheme may thus pave the way to photon-based quantum information applications, such as deterministic all-optical quantum computation, dense coding and teleportation.Comment: Corrected typo

    Lasers: The first fifty years

    Get PDF
    This year marks the 50th anniversary of the invention of the laser. The Optical Society of America is publishing this feature issue to celebrate this auspicious birthday. © 2010 Optical Society of America

    The creation of large photon-number path entanglement conditioned on photodetection

    Get PDF
    Large photon-number path entanglement is an important resource for enhanced precision measurements and quantum imaging. We present a general constructive protocol to create any large photon number path-entangled state based on the conditional detection of single photons. The influence of imperfect detectors is considered and an asymptotic scaling law is derived.Comment: 6 pages, 4 figure

    Second Harmonic Generation for a Dilute Suspension of Coated Particles

    Full text link
    We derive an expression for the effective second-harmonic coefficient of a dilute suspension of coated spherical particles. It is assumed that the coating material, but not the core or the host, has a nonlinear susceptibility for second-harmonic generation (SHG). The resulting compact expression shows the various factors affecting the effective SHG coefficient. The effective SHG per unit volume of nonlinear coating material is found to be greatly enhanced at certain frequencies, corresponding to the surface plasmon resonance of the coated particles. Similar expression is also derived for a dilute suspension of coated discs. For coating materials with third-harmonic (THG) coefficient, results for the effective THG coefficients are given for the cases of coated particles and coated discs.Comment: 11 pages, 3 figures; accepted for publication in Phys. Rev.

    Solid-state laser system for laser cooling of Sodium

    Full text link
    We demonstrate a frequency-stabilized, all-solid laser source at 589 nm with up to 800 mW output power. The laser relies on sum-frequency generation from two laser sources at 1064 nm and 1319 nm through a PPKTP crystal in a doubly-resonant cavity. We obtain conversion efficiency as high as 2 W/W^2 after optimization of the cavity parameters. The output wavelength is tunable over 60 GHz, which is sufficient to lock on the Sodium D2 line. The robustness, beam quality, spectral narrowness and tunability of our source make it an alternative to dye lasers for atomic physics experiments with Sodium atoms
    • 

    corecore