207 research outputs found

    Dissipative Future Universe without Big Rip

    Full text link
    The present study deals with dissipative future universe without big rip in context of Eckart formalism. The generalized chaplygin gas, characterized by equation of state p=Aρ1αp=-\frac{A}{\rho^\frac{1}{\alpha}}, has been considered as a model for dark energy due to its dark-energy-like evolution at late time. It is demonstrated that, if the cosmic dark energy behaves like a fluid with equation of state p=ωρp=\omega\rho; ω<1\omega < -1, as well as chaplygin gas simultaneously then the big rip problem does not arises and the scale factor is found to be regular for all time.Comment: 6 pages, 2 figures, To appear in Int. J. Theor. Phy

    Bianchi Type III Anisotropic Dark Energy Models with Constant Deceleration Parameter

    Full text link
    The Bianchi type III dark energy models with constant deceleration parameter are investigated. The equation of state parameter ω\omega is found to be time dependent and its existing range for this model is consistent with the recent observations of SN Ia data, SN Ia data (with CMBR anisotropy) and galaxy clustering statistics. The physical aspect of the dark energy models are discussed.Comment: 12 pages, 2 figures, Accepted version of IJT

    Modified gravity in a viscous and non-isotropic background

    Full text link
    We study the dynamical evolution of an f(R)f(R) model of gravity in a viscous and anisotropic background which is given by a Bianchi type-I model of the Universe. We find viable forms of f(R)f(R) gravity in which one is exactly the Einsteinian model of gravity with a cosmological constant and other two are power law f(R)f(R) models. We show that these two power law models are stable with a suitable choice of parameters. We also examine three potentials which exhibit the potential effect of f(R)f(R) models in the context of scalar tensor theory. By solving different aspects of the model and finding the physical quantities in the Jordan frame, we show that the equation of state parameter satisfy the dominant energy condition. At last we show that the two power law f(R)f(R) models behave like quintessence model at late times and also the shear coefficient viscosity tends to zero at late times.Comment: 7 pages, 2 figure

    Bacterial cellulose and bacterial cellulose/polycaprolactone composite as tissue substitutes in rabbits' cornea

    Full text link
    ABSTRACT: In order to test the performance of bacterial cellulose/polycaprolactone composite (BC/PCL) and pure bacterial cellulose (BC) as tissue substitutes in rabbits' cornea, a superficial ulcer containing 5mm in diameter and 0.2mm deep was made in the right cornea of 36 rabbits, then a interlayer pocket was created from the basis of this ulcer. Twelve rabbits received BC/PCL membrane and 12 were treated with BC membranes, both membranes with 8mm in diameter. The remaining rabbits received no membrane constituting the control group. The animals were clinically followed up for 45 days. Three animals of each group were euthanized at three, seven, 21, and 45 days after implantation for histological examination of the cornea along with the implant. Clinical observation revealed signs of moderate inflammatory process, decreasing from day 20th in the implanted groups. Histology showed absence of epithelium on the membranes, fibroplasia close to the implants, lymph inflammatory infiltrate with giant cells, collagen disorganization, with a predominance of immature collagen fibers in both groups with implants. Although inflammatory response is acceptable, the membranes used does not satisfactorily played the role of tissue substitute for the cornea during the study period

    Two-Fluid Scenario for Dark Energy Models in an FRW Universe-Revisited

    Full text link
    In this paper we study the evolution of the dark energy parameter within the scope of a spatially homogeneous and isotropic Friedmann-Robertson-Walker (FRW) model filled with barotropic fluid and dark energy by revisiting the recent results (Amirhashchi et al. in Chin. Phys. Lett. 28:039801, 2011a). To prevail the deterministic solution we select the scale factor a(t)=tneta(t) = \sqrt{t^{n}e^{t}} which generates a time-dependent deceleration parameter (DP), representing a model which generates a transition of the universe from the early decelerating phase to the recent accelerating phase. We consider the two cases of an interacting and non-interacting two-fluid (barotropic and dark energy) scenario and obtained general results. The cosmic jerk parameter in our derived model is also found to be in good agreement with the recent data of astrophysical observations under the suitable condition. The physical aspects of the models and the stability of the corresponding solutions are also discussed.Comment: 10 pages, 4 figures. arXiv admin note: substantial overlap with arXiv:1011.394

    Addressing climate change with behavioral science:A global intervention tournament in 63 countries

    Get PDF

    Addressing climate change with behavioral science:A global intervention tournament in 63 countries

    Get PDF
    Effectively reducing climate change requires marked, global behavior change. However, it is unclear which strategies are most likely to motivate people to change their climate beliefs and behaviors. Here, we tested 11 expert-crowdsourced interventions on four climate mitigation outcomes: beliefs, policy support, information sharing intention, and an effortful tree-planting behavioral task. Across 59,440 participants from 63 countries, the interventions' effectiveness was small, largely limited to nonclimate skeptics, and differed across outcomes: Beliefs were strengthened mostly by decreasing psychological distance (by 2.3%), policy support by writing a letter to a future-generation member (2.6%), information sharing by negative emotion induction (12.1%), and no intervention increased the more effortful behavior-several interventions even reduced tree planting. Last, the effects of each intervention differed depending on people's initial climate beliefs. These findings suggest that the impact of behavioral climate interventions varies across audiences and target behaviors.</p

    Addressing climate change with behavioral science:A global intervention tournament in 63 countries

    Get PDF
    Effectively reducing climate change requires marked, global behavior change. However, it is unclear which strategies are most likely to motivate people to change their climate beliefs and behaviors. Here, we tested 11 expert-crowdsourced interventions on four climate mitigation outcomes: beliefs, policy support, information sharing intention, and an effortful tree-planting behavioral task. Across 59,440 participants from 63 countries, the interventions' effectiveness was small, largely limited to nonclimate skeptics, and differed across outcomes: Beliefs were strengthened mostly by decreasing psychological distance (by 2.3%), policy support by writing a letter to a future-generation member (2.6%), information sharing by negative emotion induction (12.1%), and no intervention increased the more effortful behavior-several interventions even reduced tree planting. Last, the effects of each intervention differed depending on people's initial climate beliefs. These findings suggest that the impact of behavioral climate interventions varies across audiences and target behaviors.</p

    Global, regional, and national disability-adjusted life-years (DALYs) for 315 diseases and injuries and healthy life expectancy (HALE), 1990–2015: a systematic analysis for the Global Burden of Disease Study 2015

    Get PDF
    Background Healthy life expectancy (HALE) and disability-adjusted life-years (DALYs) provide summary measures of health across geographies and time that can inform assessments of epidemiological patterns and health system performance, help to prioritise investments in research and development, and monitor progress toward the Sustainable Development Goals (SDGs). We aimed to provide updated HALE and DALYs for geographies worldwide and evaluate how disease burden changes with development. Methods We used results from the Global Burden of Diseases, Injuries, and Risk Factors Study 2015 (GBD 2015) for all-cause mortality, cause-specific mortality, and non-fatal disease burden to derive HALE and DALYs by sex for 195 countries and territories from 1990 to 2015. We calculated DALYs by summing years of life lost (YLLs) and years of life lived with disability (YLDs) for each geography, age group, sex, and year. We estimated HALE using the Sullivan method, which draws from age-specific death rates and YLDs per capita. We then assessed how observed levels of DALYs and HALE differed from expected trends calculated with the Socio-demographic Index (SDI), a composite indicator constructed from measures of income per capita, average years of schooling, and total fertility rate. Findings Total global DALYs remained largely unchanged from 1990 to 2015, with decreases in communicable, neonatal, maternal, and nutritional (Group 1) disease DALYs offset by increased DALYs due to non-communicable diseases (NCDs). Much of this epidemiological transition was caused by changes in population growth and ageing, but it was accelerated by widespread improvements in SDI that also correlated strongly with the increasing importance of NCDs. Both total DALYs and age-standardised DALY rates due to most Group 1 causes significantly decreased by 2015, and although total burden climbed for the majority of NCDs, age-standardised DALY rates due to NCDs declined. Nonetheless, age-standardised DALY rates due to several high-burden NCDs (including osteoarthritis, drug use disorders, depression, diabetes, congenital birth defects, and skin, oral, and sense organ diseases) either increased or remained unchanged, leading to increases in their relative ranking in many geographies. From 2005 to 2015, HALE at birth increased by an average of 2·9 years (95% uncertainty interval 2·9–3·0) for men and 3·5 years (3·4–3·7) for women, while HALE at age 65 years improved by 0·85 years (0·78–0·92) and 1·2 years (1·1–1·3), respectively. Rising SDI was associated with consistently higher HALE and a somewhat smaller proportion of life spent with functional health loss; however, rising SDI was related to increases in total disability. Many countries and territories in central America and eastern sub-Saharan Africa had increasingly lower rates of disease burden than expected given their SDI. At the same time, a subset of geographies recorded a growing gap between observed and expected levels of DALYs, a trend driven mainly by rising burden due to war, interpersonal violence, and various NCDs. Interpretation Health is improving globally, but this means more populations are spending more time with functional health loss, an absolute expansion of morbidity. The proportion of life spent in ill health decreases somewhat with increasing SDI, a relative compression of morbidity, which supports continued efforts to elevate personal income, improve education, and limit fertility. Our analysis of DALYs and HALE and their relationship to SDI represents a robust framework on which to benchmark geography-specific health performance and SDG progress. Country-specific drivers of disease burden, particularly for causes with higher-than-expected DALYs, should inform financial and research investments, prevention efforts, health policies, and health system improvement initiatives for all countries along the development continuum. Funding Bill &amp; Melinda Gates Foundation

    Global, regional, and national burden of household air pollution, 1990–2021: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background Despite a substantial reduction in the use of solid fuels for cooking worldwide, exposure to household air pollution (HAP) remains a leading global risk factor, contributing considerably to the burden of disease. We present a comprehensive analysis of spatial patterns and temporal trends in exposure and attributable disease from 1990 to 2021, featuring substantial methodological updates compared with previous iterations of the Global Burden of Diseases, Injuries, and Risk Factors Study, including improved exposure estimations accounting for specific fuel types. Methods We estimated HAP exposure and trends and attributable burden for cataract, chronic obstructive pulmonary disease, ischaemic heart disease, lower respiratory infections, tracheal cancer, bronchus cancer, lung cancer, stroke, type 2 diabetes, and causes mediated via adverse reproductive outcomes for 204 countries and territories from 1990 to 2021. We first estimated the mean fuel type-specific concentrations (in μg/m3) of fine particulate matter (PM2·5) pollution to which individuals using solid fuels for cooking were exposed, categorised by fuel type, location, year, age, and sex. Using a systematic review of the epidemiological literature and a newly developed meta-regression tool (meta-regression: Bayesian, regularised, trimmed), we derived disease-specific, non-parametric exposure–response curves to estimate relative risk as a function of PM2·5 concentration. We combined our exposure estimates and relative risks to estimate population attributable fractions and attributable burden for each cause by sex, age, location, and year. Findings In 2021, 2·67 billion (95% uncertainty interval [UI] 2·63–2·71) people, 33·8% (95% UI 33·2–34·3) of the global population, were exposed to HAP from all sources at a mean concentration of 84·2 μg/m3. Although these figures show a notable reduction in the percentage of the global population exposed in 1990 (56·7%, 56·4–57·1), in absolute terms, there has been only a decline of 0·35 billion (10%) from the 3·02 billion people exposed to HAP in 1990. In 2021, 111 million (95% UI 75·1–164) global disability-adjusted life-years (DALYs) were attributable to HAP, accounting for 3·9% (95% UI 2·6–5·7) of all DALYs. The rate of global, HAP-attributable DALYs in 2021 was 1500·3 (95% UI 1028·4–2195·6) age-standardised DALYs per 100 000 population, a decline of 63·8% since 1990, when HAP-attributable DALYs comprised 4147·7 (3101·4–5104·6) age-standardised DALYs per 100 000 population. HAP-attributable burden remained highest in sub-Saharan Africa and south Asia, with 4044·1 (3103·4–5219·7) and 3213·5 (2165·4–4409·4) age-standardised DALYs per 100 000 population, respectively. The rate of HAP-attributable DALYs was higher for males (1530·5, 1023·4–2263·6) than for females (1318·5, 866·1–1977·2). Approximately one-third of the HAP-attributable burden (518·1, 410·1–641·7) was mediated via short gestation and low birthweight. Decomposition of trends and drivers behind changes in the HAP-attributable burden highlighted that declines in exposures were counteracted by population growth in most regions of the world, especially sub-Saharan Africa. Interpretation Although the burden attributable to HAP has decreased considerably, HAP remains a substantial risk factor, especially in sub-Saharan Africa and south Asia. Our comprehensive estimates of HAP exposure and attributable burden offer a robust and reliable resource for health policy makers and practitioners to precisely target and tailor health interventions. Given the persistent and substantial impact of HAP in many regions and countries, it is imperative to accelerate efforts to transition under-resourced communities to cleaner household energy sources. Such initiatives are crucial for mitigating health risks and promoting sustainable development, ultimately improving the quality of life and health outcomes for millions of people. Funding Bill & Melinda Gates Foundation
    corecore