471 research outputs found

    Anisotropic scattering and quantum magnetoresistivities of a periodically modulated 2D electron gas

    Full text link
    We calculate the longitudinal conductivities of a two-dimensional noninteracting electron gas in a uniform magnetic field and a lateral electric or magnetic periodic modulation in one spatial direction, in the quantum regime. We consider the effects of the electron-impurity scattering anisotropy through the vertex corrections on the Kubo formula, which are calculated with the Bethe-Salpeter equation, in the self-consistent Born approximation. We find that due to the scattering anisotropy the band conductivity increases, and the scattering conductivities decrease and become anisotropic. Our results are in qualitative agreement with recent experiments.Comment: 19 pages, 8 figures, Revtex, to appear in Phys. Rev.

    Guiding center picture of magnetoresistance oscillations in rectangular superlattices

    Full text link
    We calculate the magneto-resistivities of a two-dimensional electron gas subjected to a lateral superlattice (LSL) of rectangular symmetry within the guiding-center picture, which approximates the classical electron motion as a rapid cyclotron motion around a slowly drifting guiding center. We explicitly evaluate the velocity auto-correlation function along the trajectories of the guiding centers, which are equipotentials of a magnetic-field dependent effective LSL potential. The existence of closed equipotentials may lead to a suppression of the commensurability oscillations, if the mean free path and the LSL modulation potential are large enough. We present numerical and analytical results for this suppression, which allow, in contrast to previous quantum arguments, a classical explanation of similar suppression effects observed experimentally on square-symmetric LSL. Furthermore, for rectangular LSLs of lower symmetry they lead us to predict a strongly anisotropic resistance tensor, with high- and low-resistance directions which can be interchanged by tuning the externally applied magnetic field.Comment: 12 pages, 9 figure

    Inverse flux quantum periodicity of magnetoresistance oscillations in two-dimensional short-period surface superlattices

    Full text link
    Transport properties of the two-dimensional electron gas (2DEG) are considered in the presence of a perpendicular magnetic field BB and of a {\it weak} two-dimensional (2D) periodic potential modulation in the 2DEG plane. The symmetry of the latter is rectangular or hexagonal. The well-known solution of the corresponding tight-binding equation shows that each Landau level splits into several subbands when a rational number of flux quanta h/eh/e pierces the unit cell and that the corresponding gaps are exponentially small. Assuming the latter are closed due to disorder gives analytical wave functions and simplifies considerably the evaluation of the magnetoresistivity tensor ρμν\rho_{\mu\nu}. The relative phase of the oscillations in ρxx\rho_{xx} and ρyy\rho_{yy} depends on the modulation periods involved. For a 2D modulation with a {\bf short} period 100\leq 100 nm, in addition to the Weiss oscillations the collisional contribution to the conductivity and consequently the tensor ρμν\rho_{\mu\nu} show {\it prominent peaks when one flux quantum h/eh/e passes through an integral number of unit cells} in good agreement with recent experiments. For periods 300400300- 400 nm long used in early experiments, these peaks occur at fields 10-25 times smaller than those of the Weiss oscillations and are not resolved

    Cosmological Tracking Solutions

    Get PDF
    A substantial fraction of the energy density of the universe may consist of quintessence in the form of a slowly-rolling scalar field. Since the energy density of the scalar field generally decreases more slowly than the matter energy density, it appears that the ratio of the two densities must be set to a special, infinitesimal value in the early universe in order to have the two densities nearly coincide today. Recently, we introduced the notion of tracker fields to avoid this initial conditions problem. In the paper, we address the following questions: What is the general condition to have tracker fields? What is the relation between the matter energy density and the equation-of-state of the universe imposed by tracker solutions? And, can tracker solutions explain why quintessence is becoming important today rather than during the early universe

    Edge magnetoplasmons in periodically modulated structures

    Full text link
    We present a microscopic treatment of edge magnetoplasmons (EMP's) within the random-phase approximation for strong magnetic fields, low temperatures, and filling factor ν=1(2)\nu =1(2), when a weak short-period superlattice potential is imposed along the Hall bar. The modulation potential modifies both the spatial structure and the dispersion relation of the fundamental EMP and leads to the appearance of a novel gapless mode of the fundamental EMP. For sufficiently weak modulation strengths the phase velocity of this novel mode is almost the same as the group velocity of the edge states but it should be quite smaller for stronger modulation. We discuss in detail the spatial structure of the charge density of the renormalized and the novel fundamental EMP's.Comment: 8 pages, 4 figure

    Effects of the field modulation on the Hofstadter's spectrum

    Full text link
    We study the effect of spatially modulated magnetic fields on the energy spectrum of a two-dimensional (2D) Bloch electron. Taking into account four kinds of modulated fields and using the method of direct diagonalization of the Hamiltonian matrix, we calculate energy spectra with varying system parameters (i.e., the kind of the modulation, the relative strength of the modulated field to the uniform background field, and the period of the modulation) to elucidate that the energy band structure sensitively depends on such parameters: Inclusion of spatially modulated fields into a uniform field leads occurrence of gap opening, gap closing, band crossing, and band broadening, resulting distinctive energy band structure from the Hofstadter's spectrum. We also discuss the effect of the field modulation on the symmetries appeared in the Hofstadter's spectrum in detail.Comment: 7 pages (in two-column), 10 figures (including 2 tables

    Weak Localization and Integer Quantum Hall Effect in a Periodic Potential

    Full text link
    We consider magnetotransport in a disordered two-dimensional electron gas in the presence of a periodic modulation in one direction. Existing quasiclassical and quantum approaches to this problem account for Weiss oscillations in the resistivity tensor at moderate magnetic fields, as well as a strong modulation-induced modification of the Shubnikov-de Haas oscillations at higher magnetic fields. They do not account, however, for the operation at even higher magnetic fields of the integer quantum Hall effect, for which quantum interference processes are responsible. We then introduce a field-theory approach, based on a nonlinear sigma model, which encompasses naturally both the quasiclassical and quantum-mechanical approaches, as well as providing a consistent means of extending them to include quantum interference corrections. A perturbative renormalization-group analysis of the field theory shows how weak localization corrections to the conductivity tensor may be described by a modification of the usual one-parameter scaling, such as to accommodate the anisotropy of the bare conductivity tensor. We also show how the two-parameter scaling, conjectured as a model for the quantum Hall effect in unmodulated systems, may be generalized similarly for the modulated system. Within this model we illustrate the operation of the quantum Hall effect in modulated systems for parameters that are realistic for current experiments.Comment: 15 pages, 4 figures, ReVTeX; revised version with condensed introduction; two figures taken out; reference adde

    Magnetotransport in Two-Dimensional Electron Systems with Spin-Orbit Interaction

    Full text link
    We present magnetotransport calculations for homogeneous two-dimensional electron systems including the Rashba spin-orbit interaction, which mixes the spin-eigenstates and leads to a modified fan-chart with crossing Landau levels. The quantum mechanical Kubo formula is evaluated by taking into account spin-conserving scatterers in an extension of the self-consistent Born approximation that considers the spin degree of freedom. The calculated conductivity exhibits besides the well-known beating in the Shubnikov-de Haas (SdH) oscillations a modulation which is due to a suppression of scattering away from the crossing points of Landau levels and does not show up in the density of states. This modulation, surviving even at elevated temperatures when the SdH oscillations are damped out, could serve to identify spin-orbit coupling in magnetotransport experiments. Our magnetotransport calculations are extended also to lateral superlattices and predictions are made with respect to 1/B periodic oscillations in dependence on carrier density and strength of the spin-orbit coupling.Comment: 8 pages including 8 figures; submitted to PR

    Measurement of the Charged Multiplicities in b, c and Light Quark Events from Z0 Decays

    Full text link
    Average charged multiplicities have been measured separately in bb, cc and light quark (u,d,su,d,s) events from Z0Z^0 decays measured in the SLD experiment. Impact parameters of charged tracks were used to select enriched samples of bb and light quark events, and reconstructed charmed mesons were used to select cc quark events. We measured the charged multiplicities: nˉuds=20.21±0.10(stat.)±0.22(syst.)\bar{n}_{uds} = 20.21 \pm 0.10 (\rm{stat.})\pm 0.22(\rm{syst.}), nˉc=21.28±0.46(stat.)0.36+0.41(syst.)\bar{n}_{c} = 21.28 \pm 0.46(\rm{stat.}) ^{+0.41}_{-0.36}(\rm{syst.}) nˉb=23.14±0.10(stat.)0.37+0.38(syst.)\bar{n}_{b} = 23.14 \pm 0.10(\rm{stat.}) ^{+0.38}_{-0.37}(\rm{syst.}), from which we derived the differences between the total average charged multiplicities of cc or bb quark events and light quark events: Δnˉc=1.07±0.47(stat.)0.30+0.36(syst.)\Delta \bar{n}_c = 1.07 \pm 0.47(\rm{stat.})^{+0.36}_{-0.30}(\rm{syst.}) and Δnˉb=2.93±0.14(stat.)0.29+0.30(syst.)\Delta \bar{n}_b = 2.93 \pm 0.14(\rm{stat.})^{+0.30}_{-0.29}(\rm{syst.}). We compared these measurements with those at lower center-of-mass energies and with perturbative QCD predictions. These combined results are in agreement with the QCD expectations and disfavor the hypothesis of flavor-independent fragmentation.Comment: 19 pages LaTex, 4 EPS figures, to appear in Physics Letters

    INSEMINAÇÃO ARTIFICIAL EM ÉGUAS COM SÊMEN "IN NATURA" E DILUÍDO

    Get PDF
    Na pesquisa objetivou-se comparar a eficiência reprodutiva de dois métodos distintos de Inseminação Artificial (IA), através de espéculo de Polansky e condução manual de pipeta, com diferentes características de sêmen ("in natura" e diluído). Foram utilizadas 302 éguas da raça Crioula, com idades variando entre 3 e 14 anos, oriundas de propriedades da região Metropolitana de Curitiba. Os animais foram divididos em dois grupos experimentais: A - aqueles que foram inseminados com sêmen "in natura" (n=160); através da técnica com espéculo de Polansky (n=80) e pipeta orientada manualmente (n=80); B - animais inseminados com sêmen diluído (n=142). O acompanhamento do ciclo estral foi realizado através de ultrassonagrafia e palpação retal bem como o diagnóstico de gestação que foi realizado entre os dias 16-45 pós-ovulação. A eficiência reprodutiva das duas técnicas de inseminação (Polansky e Manual) foi de 76,2% e 75% respectivamente, não diferindo significativamente entre si, bem como a eficiência reprodutiva dos resultados da inseminação com sêmen diluído e "in natura" foram 74,3% e 75,5% respectivamente. Artificial insemination in mares with in natura and diluted semen Abstract With the aim to compare the reproductive efficiency of two different methods for articial insemination, namely through the Polanskyís speculum and by a manual directed pipette, with semen either îin naturaî or diluted, 302 mares of the Creole race, ageing from 3 to 14 years, all of them belonging to properties from the Metropolitan Area of Curitiba, were used divided in two experimental groups: A ñ those that would be inseminated with semen ìin naturaî (n=160), being 80 with Polanskyís spectrum and 80 by means of a manual directed pipette; B ñ animals inseminated with diluted semen (n=142). The following up of the estral cycle was accomplished by means of ultrasonography and rectal palpation as well as the gestation diagnosis, which was accomplished at 16 to 45 days after the ovulation. The reproductive efficiency of the two insemination techniques (Polansky and Manual) was 76,25% and 75%, respectively, not differing significantly between each other. The reproductive efficiency of the results of the insemination with diluted semen and ìin naturaî was 74,3% and 75,5%, respectively
    corecore