147 research outputs found
Vibrational properties of amorphous silicon from tight-binding O(N) calculation
We present an O(N) algorithm to study the vibrational properties of amorphous
silicon within the framework of tight-binding approach. The dynamical matrix
elements have been evaluated numerically in the harmonic approximation
exploiting the short-range nature of the density matrix to calculate the
vibrational density of states which is then compared with the same obtained
from a standard O() algorithm. For the purpose of illustration, an
1000-atom model is studied to calculate the localization properties of the
vibrational eigenstates using the participation numbers calculation.Comment: 5 pages including 5 ps figures; added a figure and a few references;
accepted in Phys. Rev.
Quantum Monte Carlo and variational approaches to the Holstein model
Based on the canonical Lang-Firsov transformation of the Hamiltonian we
develop a very efficient quantum Monte Carlo algorithm for the Holstein model
with one electron. Separation of the fermionic degrees of freedom by a
reweighting of the probability distribution leads to a dramatic reduction in
computational effort. A principal component representation of the phonon
degrees of freedom allows to sample completely uncorrelated phonon
configurations. The combination of these elements enables us to perform
efficient simulations for a wide range of temperature, phonon frequency and
electron-phonon coupling on clusters large enough to avoid finite-size effects.
The algorithm is tested in one dimension and the data are compared with
exact-diagonalization results and with existing work. Moreover, the ideas
presented here can also be applied to the many-electron case. In the
one-electron case considered here, the physics of the Holstein model can be
described by a simple variational approach.Comment: 18 pages, 11 Figures, v2: one typo correcte
Berry phases and pairing symmetry in Holstein-Hubbard polaron systems
We study the tunneling dynamics of dopant-induced hole polarons which are
self-localized by electron-phonon coupling in a two-dimensional antiferro-
magnet. Our treatment is based on a path integral formulation of the adia-
batic approximation, combined with many-body tight-binding, instanton, con-
strained lattice dynamics, and many-body exact diagonalization techniques. Our
results are mainly based on the Holstein- and, for comparison, on the
Holstein-Hubbard model. We also study effects of 2nd neighbor hopping and
long-range electron-electron Coulomb repulsion. The polaron tunneling dynamics
is mapped onto an effective low-energy Hamiltonian which takes the form of a
fermion tight-binding model with occupancy dependent, predominant- ly 2nd and
3rd neighbor tunneling matrix elements, excluded double occupan- cy, and an
effective intersite charge interactions. Antiferromagnetic spin correlations in
the original many-electron Hamiltonian are reflected by an attractive
contribution to the 1st neighbor charge interaction and by Berry phase factors
which determine the signs of effective polaron tunneling ma- trix elements. In
the two-polaron case, these phase factors lead to polaron pair wave functions
of either -wave symmetry or p-wave symme- try with zero and
nonzero total pair momentum, respectively. Implications for the doping
dependent isotope effect, pseudo-gap and Tc of a superconduc- ting polaron pair
condensate are discussed/compared to observed in cuprates.Comment: 23 pages, revtex, 13 ps figure
Theoretical proposal for the experimental realisation of a monochromatic electromagnetic knot
Quantum Matter and Optic
An introduction to the SCOUT-AMMA stratospheric aircraft, balloons and sondes campaign in West Africa, August 2006: rationale and roadmap
Search for supersymmetric particles in collisions at centre-of-mass energies of 130 and 136 GeV
- …
