2,294 research outputs found
Effect of soil type on seismic demand
This paper investigates the validity of the soil considerations used in the determination of seismic demand as part of NZS1170.5, which currently specifies seismic design spectra corresponding to 5 different soil types. According to the current provisions stipulated in NZS1170.5, for all natural periods, the building demand for soft soil is either equal to or greater than that for hard soil. It is noted that this is opposite to the basic structural dynamics theory which suggests that an increase in stiffness of a system results in an increase in the acceleration response. In this pretext, a numerical parametric study is undertaken using a 1-D nonlinear site response analysis in order to capture the effect of soil characteristics on structural seismic demand and to scrutinize the validity of the current site specific seismic design spectra. It is identified that the level of input ground motion intensity and shear stiffness of the column (represented by its shear wave velocity, Vs) are the main parameters affecting the surface response. The study found some shortfalls in the way the current code defines seismic design demand, in particular the hierarchy of soil stiffness at low structural periods. It was found that stiff soils generally tend to have a higher spectral acceleration response in comparison to soft soils although this trend is less prominent for high intensity bed rock motions. It was also found that for medium to hard soil types the spectral acceleration response at short period is grossly underestimated by the current NZS1170.5 provisions. Based on the outcomes of the parametric numerical analyses, a revised strategy to determine seismic structural demand is proposed and demonstrated
The State of Self-Organized Criticality of the Sun During the Last 3 Solar Cycles. I. Observations
We analyze the occurrence frequency distributions of peak fluxes , total
fluxes , and durations of solar flares over the last three solar cycles
(during 1980--2010) from hard X-ray data of HXRBS/SMM, BATSE/CGRO, and RHESSI.
From the synthesized data we find powerlaw slopes with mean values of
for the peak flux, for the total
flux, and for flare durations. We find a systematic
anti-correlation of the powerlaw slope of peak fluxes as a function of the
solar cycle, varying with an approximate sinusoidal variation
, with a
mean of , a variation of , a solar cycle
period yrs, and a cycle minimum time . The
powerlaw slope is flattest during the maximum of a solar cycle, which indicates
a higher magnetic complexity of the solar corona that leads to an
overproportional rate of powerful flares.Comment: subm. to Solar Physic
Universality of the Crossing Probability for the Potts Model for q=1,2,3,4
The universality of the crossing probability of a system to
percolate only in the horizontal direction, was investigated numerically by
using a cluster Monte-Carlo algorithm for the -state Potts model for
and for percolation . We check the percolation through
Fortuin-Kasteleyn clusters near the critical point on the square lattice by
using representation of the Potts model as the correlated site-bond percolation
model. It was shown that probability of a system to percolate only in the
horizontal direction has universal form for
as a function of the scaling variable . Here,
is the probability of a bond to be closed, is the
nonuniversal crossing amplitude, is the nonuniversal metric factor,
is the nonuniversal scaling index, is the correlation
length index.
The universal function . Nonuniversal scaling factors
were found numerically.Comment: 15 pages, 3 figures, revtex4b, (minor errors in text fixed,
journal-ref added
The balance of power: accretion and feedback in stellar mass black holes
In this review we discuss the population of stellar-mass black holes in our
galaxy and beyond, which are the extreme endpoints of massive star evolution.
In particular we focus on how we can attempt to balance the available accretion
energy with feedback to the environment via radiation, jets and winds,
considering also possible contributions to the energy balance from black hole
spin and advection. We review quantitatively the methods which are used to
estimate these quantities, regardless of the details of the astrophysics close
to the black hole. Once these methods have been outlined, we work through an
outburst of a black hole X-ray binary system, estimating the flow of mass and
energy through the different accretion rates and states. While we focus on
feedback from stellar mass black holes in X-ray binary systems, we also
consider the applicability of what we have learned to supermassive black holes
in active galactic nuclei. As an important control sample we also review the
coupling between accretion and feedback in neutron stars, and show that it is
very similar to that observed in black holes, which strongly constrains how
much of the astrophysics of feedback can be unique to black holes.Comment: To be published in Haardt et al. Astrophysical Black Holes. Lecture
Notes in Physics. Springer 201
Using an Ellipsoid Model to Track and Predict the Evolution and Propagation of Coronal Mass Ejections
We present a method for tracking and predicting the propagation and evolution
of coronal mass ejections (CMEs) using the imagers on the STEREO and SOHO
satellites. By empirically modeling the material between the inner core and
leading edge of a CME as an expanding, outward propagating ellipsoid, we track
its evolution in three-dimensional space. Though more complex empirical CME
models have been developed, we examine the accuracy of this relatively simple
geometric model, which incorporates relatively few physical assumptions,
including i) a constant propagation angle and ii) an azimuthally symmetric
structure. Testing our ellipsoid model developed herein on three separate CMEs,
we find that it is an effective tool for predicting the arrival of density
enhancements and the duration of each event near 1 AU. For each CME studied,
the trends in the trajectory, as well as the radial and transverse expansion
are studied from 0 to ~.3 AU to create predictions at 1 AU with an average
accuracy of 2.9 hours.Comment: 18 pages, 11 figure
Photoluminescence of silicon nano-clusters functionalized microtoroids
We report on the first realization of on-chip toroid microcavities embedding size-controlled silicon nanoclusters (Si-nc), produced by reactive magnetron co-sputtering. We demonstrate functionalized whispering gallery microresonators with low volume and high quality factor. Emission properties are optimized by tailoring the size and the shape of the toroids and the Si-nc distribution. Coalescence of Si-nc during the melting of the toroid is minimized by the design of the microdisk preforms. Photolumines- cence in the whispering gallery modes of 13:5 m diameter microtoroids, is observed in both near-field and far-field
Path integral solution for an angle-dependent anharmonic oscillator
We have given a straightforward method to solve the problem of noncentral
anharmonic oscillator in three dimensions. The relative propagator is presented
by means of path integrals in spherical coordinates. By making an adequate
change of time we were able to separate the angular motion from the radial one.
The relative propagator is then exactly calculated. The energy spectrum and the
corresponding wave functions are obtained.Comment: Corrected typos and mistakes, To appear in Communications in
Theoretical Physic
The X10 Flare on 2003 October 29: Triggered by Magnetic Reconnection between Counter-Helical Fluxes?
Vector magnetograms taken at Huairou Solar Observing Station (HSOS) and Mees
Solar Observatory (MSO) reveal that the super active region (AR) NOAA 10486 was
a complex region containing current helicity flux of opposite signs. The main
positive sunspots were dominated by negative helicity fields, while positive
helicity patches persisted both inside and around the main positive sunspots.
Based on a comparison of two days of deduced current helicity density,
pronounced changes were noticed which were associated with the occurrence of an
X10 flare that peaked at 20:49 UT, 2003 October 29. The average current
helicity density (negative) of the main sunspots decreased significantly by
about 50. Accordingly, the helicity densities of counter-helical patches
(positive) were also found to decay by the same proportion or more. In
addition, two hard X-ray (HXR) `footpoints' were observed by the Reuven Ramaty
High Energy Solar Spectroscopic Imager (RHESSI} during the flare in the 50-100
keV energy range. The cores of these two HXR footpoints were adjacent to the
positions of two patches with positive current helicity which disappeared after
the flare. This strongly suggested that the X10 flare on 2003 Oct. 29 resulted
from reconnection between magnetic flux tubes having opposite current helicity.
Finally, the global decrease of current helicity in AR 10486 by ~50% can be
understood as the helicity launched away by the halo coronal mass ejection
(CME) associated with the X10 flare.Comment: Solar Physics, 2007, in pres
Recent developments in planet migration theory
Planetary migration is the process by which a forming planet undergoes a
drift of its semi-major axis caused by the tidal interaction with its parent
protoplanetary disc. One of the key quantities to assess the migration of
embedded planets is the tidal torque between the disc and planet, which has two
components: the Lindblad torque and the corotation torque. We review the latest
results on both torque components for planets on circular orbits, with a
special emphasis on the various processes that give rise to additional, large
components of the corotation torque, and those contributing to the saturation
of this torque. These additional components of the corotation torque could help
address the shortcomings that have recently been exposed by models of planet
population syntheses. We also review recent results concerning the migration of
giant planets that carve gaps in the disc (type II migration) and the migration
of sub-giant planets that open partial gaps in massive discs (type III
migration).Comment: 52 pages, 18 figures. Review article to be published in "Tidal
effects in Astronomy and Astrophysics", Lecture Notes in Physic
An assessment of pulse transit time for detecting heavy blood loss during surgical operation
Copyright @ Wang et al.; Licensee Bentham Open.
This is an open access article licensed under the terms of the Creative Commons Attribution Non-Commercial License
(http://creativecommons.org/licenses/by-nc/3.0/) which permits unrestricted, non-commercial use, distribution and reproduction in any medium, provided the
work is properly cited.The main contribution of this paper is the use of non-invasive measurements such as electrocardiogram (ECG) and photoplethysmographic (PPG) pulse oximetry waveforms to develop a new physiological signal analysis technique for detecting blood loss during surgical operation. Urological surgery cases were considered as the control group due to its generality, and cardiac surgery as experimental group since it involves blood loss and water supply. Results show that the control group has the tendency of a reduction of the pulse transient time (PTT), and this indicates an increment in the blood flow velocity changes from slow to fast. While for the experimental group, the PTT indicates high values during blood loss, and low values during water supply. Statistical analysis shows considerable differences (i.e., P <0.05) between both groups leading to the conclusion that PTT could be a good indicator for monitoring patients' blood loss during a surgical operation.The National Science Council (NSC) of Taiwan and the Centre for Dynamical Biomarkers and Translational Medicine, National Central University, Taiwan
- …
