1,431 research outputs found

    Influencia de la micronización y el origen de la harina de soja en los redimientos productivos en lechones destetados

    Get PDF
    La harina de soja (HS) es la fuente de proteína de elección en dietas para cerdos. La HS contiene diversos factores anti nutricionales (FAN), tales como los inhibidores de tripsina (IT; Huisman y Jansman, 1991) y los oligosacáridos (Clarke y Wiseman, 2005) que afectan al crecimiento y limitan los niveles de inclusión en dietas para lechones. El procesado térmico del haba y su composición (De Coca Sinova et al., 2008) afectan al contenido de nutrientes así como la respuesta de los animales a su inclusión en piensos. Morgan et al. (1984) y Dilger et al. (2004) han demostrado que un aumento en el contenido de fibra bruta de la dieta o de la HS utilizada disminuye la digestibilidad de los nutrientes en monogástricos y De Coca et al. (2008) observaron una relación lineal entre el contenido de proteína bruta (PB) y la digestibilidad de los aminoácidos en HS. Por lo tanto, la inclusión de HS de alto contenido en PB (AP-HS) en sustitución de HS de menor contenido proteico (BP-HS) podría mejorar el crecimiento de los lechones. Los concentrados de soja (CPS) tienen un alto contenido en PB y bajo contenido de fibra bruta y en FAN (Shon et al., 1994). Por lo tanto, la sustitución de HS por CPS, podría mejorar el rendimiento de los cerdos al destete. Los efectos del tamaño medio de partícula (GMD) del pienso sobre el crecimiento es un tema de debate (Goodband et al., 1995). La mayoría de estudios llevados a cabo con cereales han encontrado una relación directa positiva entre la GMD y el índice de conversión (IC) en cerdos (Goodband y Hines, 1988; Healy et al., 1994). Sin embargo, los resultados disponibles sobre los efectos de la molturación fina de la HS sobre la productividad en lechones son escasos y no concordantes (Fastinger y Mahan, 2003; Lawrence et al., 2003; Valencia et al., 2008). El objetivo de este experimento fue evaluar los efectos de la inclusión de diferentes tipos de soja en los que variaba el contenido de PB y el tamaño de partícula sobre el crecimiento de los lechones

    Supporting 'design for reuse' with modular design

    Get PDF
    Engineering design reuse refers to the utilization of any knowledge gained from the design activity to support future design. As such, engineering design reuse approaches are concerned with the support, exploration, and enhancement of design knowledge prior, during, and after a design activity. Modular design is a product structuring principle whereby products are developed with distinct modules for rapid product development, efficient upgrades, and possible reuse (of the physical modules). The benefits of modular design center on a greater capacity for structuring component parts to better manage the relation between market requirements and the designed product. This study explores the capabilities of modular design principles to provide improved support for the engineering design reuse concept. The correlations between modular design and 'reuse' are highlighted, with the aim of identifying its potential to aid the little-supported process of design for reuse. In fulfilment of this objective the authors not only identify the requirements of design for reuse, but also propose how modular design principles can be extended to support design for reuse

    On the "Galactic Habitable Zone"

    Get PDF
    The concept of Galactic Habitable Zone (GHZ) was introduced a few years ago as an extension of the much older concept of Circumstellar Habitable Zone. However, the physical processes underlying the former concept are hard to identify and even harder to quantify. That difficulty does not allow us, at present, to draw any significant conclusions about the extent of the GHZ: it may well be that the entire Milky Way disk is suitable for complex life.Comment: 12 pages, 6 figures, Invited talk in "Strategies for Life Detection" (ISSI Bern, 24-28 April 2006), Eds, J. Bada et al., to appear in Space Science Review

    The Layer 0 Inner Silicon Detector of the D0 Experiment

    Full text link
    This paper describes the design, fabrication, installation and performance of the new inner layer called Layer 0 (L0) that was inserted in the existing Run IIa Silicon Micro-Strip Tracker (SMT) of the D0 experiment at the Fermilab Tevatron collider. L0 provides tracking information from two layers of sensors, which are mounted with center lines at a radial distance of 16.1 mm and 17.6 mm respectively from the beam axis. The sensors and readout electronics are mounted on a specially designed and fabricated carbon fiber structure that includes cooling for sensor and readout electronics. The structure has a thin polyimide circuit bonded to it so that the circuit couples electrically to the carbon fiber allowing the support structure to be used both for detector grounding and a low impedance connection between the remotely mounted hybrids and the sensors.Comment: 28 pages, 9 figure

    Compilation of parameterized seismogenic sources in Iberia for the SHARE European-scale seismic source model.

    Get PDF
    Abstract: SHARE (Seismic Hazard Harmonization in Europe) is an EC-funded project (FP7) that aims to evaluate European seismic hazards using an integrated, standardized approach. In the context of SHARE, we are compiling a fully-parameterized active fault database for Iberia and the nearby offshore region. The principal goal of this initiative is for fault sources in the Iberian region to be represented in SHARE and incorporated into the source model that will be used to produce seismic hazard maps at the European scale. The SHARE project relies heavily on input from many regional experts throughout the Euro-Mediterranean region. At the SHARE regional meeting for Iberia, the 2010 Working Group on Iberian Seismogenic Sources (WGISS) was established; these researchers are contributing to this large effort by providing their data to the Iberian regional integrators in a standardized format. The development of the SHARE Iberian active fault database is occurring in parallel with IBERFAULT, another ongoing effort to compile a database of active faults in the Iberian region. The SHARE Iberian active fault database synthesizes a wide range of geological and geophysical observations on active seismogenic sources, and incorporates existing compilations (e.g., Cabral, 1995; Silva et al., 2008), original data contributed directly from researchers, data compiled from the literature, parameters estimated using empirical and analytical relationships, and, where necessary, parameters derived using expert judgment. The Iberian seismogenic source model derived for SHARE will be the first regional-scale source model for Iberia that includes fault data and follows an internationally standardized approach (Basili et al., 2008; 2009). This model can be used in both seismic hazard and risk analyses and will be appropriate for use in Iberian- and European-scale assessments

    Contact Interactions Involving Right-handed Neutrinos and SN1987A

    Get PDF
    We consider lepton-quark contact interactions in models with right-handed neutrinos, and find that observational data from SN1987A restricts the scale of such interactions to be at least Λ>90\Lambda>90 TeV.Comment: 7 pages, latex, no figures. Minor corrections to match final version to appear in Phys. Rev.

    Physical interactions between MCM and Rad51 facilitate replication fork lesion bypass and ssDNA gap filling by non-recombinogenic functions

    Get PDF
    The minichromosome maintenance (MCM) helicase physically interacts with the recombination proteins Rad51 and Rad52 from yeast to human cells. We show, in Saccharomyces cerevisiae, that these interactions occur within a nuclease-insoluble scaffold enriched in replication/repair factors. Rad51 accumulates in a MCM- and DNA-binding-independent manner and interacts with MCMhelicases located outside of the replication origins and forks. MCM, Rad51, and Rad52 accumulate in this scaffold in G1 and are released during the S phase. In the presence of replication-blocking lesions, Cdc7 prevents their release from the scaffold, thus maintaining the interactions. We identify a rad51 mutant that is impaired in its ability to bind to MCM but not to the scaffold. This mutant is proficient in recombination but partially defective in single-stranded DNA (ssDNA) gap filling and replication fork progression through damaged DNA. Therefore, cells accumulate MCM/Rad51/Rad52 complexes at specific nuclear scaffolds in G1 to assist stressed forks through non-recombinogenic functions.Cancer Signaling networks and Molecular Therapeutic

    Filtering out the cosmological constant in the Palatini formalism of modified gravity

    Full text link
    According to theoretical physics the cosmological constant (CC) is expected to be much larger in magnitude than other energy densities in the universe, which is in stark contrast to the observed Big Bang evolution. We address this old CC problem not by introducing an extremely fine-tuned counterterm, but in the context of modified gravity in the Palatini formalism. In our model the large CC term is filtered out, and it does not prevent a standard cosmological evolution. We discuss the filter effect in the epochs of radiation and matter domination as well as in the asymptotic de Sitter future. The final expansion rate can be much lower than inferred from the large CC without using a fine-tuned counterterm. Finally, we show that the CC filter works also in the Kottler (Schwarzschild-de Sitter) metric describing a black hole environment with a CC compatible to the future de Sitter cosmos.Comment: 22 pages, 1 figure, discussion extended, references added, accepted by Gen.Rel.Gra

    Answering a Basic Objection to Bang/Crunch Holography

    Full text link
    The current cosmic acceleration does not imply that our Universe is basically de Sitter-like: in the first part of this work we argue that, by introducing matter into *anti-de Sitter* spacetime in a natural way, one may be able to account for the acceleration just as well. However, this leads to a Big Crunch, and the Euclidean versions of Bang/Crunch cosmologies have [apparently] disconnected conformal boundaries. As Maldacena and Maoz have recently stressed, this seems to contradict the holographic principle. In the second part we argue that this "double boundary problem" is a matter not of geometry but rather of how one chooses a conformal compactification: if one chooses to compactify in an unorthodox way, then the appearance of disconnectedness can be regarded as a *coordinate effect*. With the kind of matter we have introduced here, namely a Euclidean axion, the underlying compact Euclidean manifold has an unexpectedly non-trivial topology: it is in fact one of the 75 possible underlying manifolds of flat compact four-dimensional Euclidean spaces.Comment: 29 pages, 3 figures, added references and comparison with "cyclic" cosmology, JHEP versio

    Stability analysis of agegraphic dark energy in Brans-Dicke cosmology

    Full text link
    Stability analysis of agegraphic dark energy in Brans-Dicke theory is presented in this paper. We constrain the model parameters with the observational data and thus the results become broadly consistent with those expected from experiment. Stability analysis of the model without best fitting shows that universe may begin from an unstable state passing a saddle point and finally become stable in future. However, with the best fitted model, There is no saddle intermediate state. The agegraphic dark energy in the model by itself exhibits a phantom behavior. However, contribution of cold dark matter on the effective energy density modifies the state of teh universe from phantom phase to quintessence one. The statefinder diagnosis also indicates that the universe leaves an unstable state in the past, passes the LCDM state and finally approaches the sable state in future.Comment: 15 pages, 12 figure
    corecore