644 research outputs found
Quantum entanglement and information processing via excitons in optically-driven quantum dots
We show how optically-driven coupled quantum dots can be used to prepare
maximally entangled Bell and Greenberger-Horne-Zeilinger states. Manipulation
of the strength and duration of the selective light-pulses needed for producing
these highly entangled states provides us with crucial elements for the
processing of solid-state based quantum information. Theoretical predictions
suggest that several hundred single quantum bit rotations and Controlled-Not
gates could be performed before decoherence of the excitonic states takes
place.Comment: 3 separate PostScript Figures + 7 pages. Typos corrected. Minor
changes added. This updated version is to appear in PR
Probabilistic instantaneous quantum computation
The principle of teleportation can be used to perform a quantum computation
even before its quantum input is defined. The basic idea is to perform the
quantum computation at some earlier time with qubits which are part of an
entangled state. At a later time a generalized Bell state measurement is
performed jointly on the then defined actual input qubits and the rest of the
entangled state. This projects the output state onto the correct one with a
certain exponentially small probability. The sufficient conditions are found
under which the scheme is of benefit.Comment: 4 pages, 1 figur
Correlated Errors in Quantum Error Corrections
We show that errors are not generated correlatedly provided that quantum bits
do not directly interact with (or couple to) each other. Generally, this
no-qubits-interaction condition is assumed except for the case where two-qubit
gate operation is being performed. In particular, the no-qubits-interaction
condition is satisfied in the collective decoherence models. Thus, errors are
not correlated in the collective decoherence. Consequently, we can say that
current quantum error correcting codes which correct single-qubit-errors will
work in most cases including the collective decoherence.Comment: no correction, 3 pages, RevTe
Quantum Probabilistic Subroutines and Problems in Number Theory
We present a quantum version of the classical probabilistic algorithms
la Rabin. The quantum algorithm is based on the essential use of
Grover's operator for the quantum search of a database and of Shor's Fourier
transform for extracting the periodicity of a function, and their combined use
in the counting algorithm originally introduced by Brassard et al. One of the
main features of our quantum probabilistic algorithm is its full unitarity and
reversibility, which would make its use possible as part of larger and more
complicated networks in quantum computers. As an example of this we describe
polynomial time algorithms for studying some important problems in number
theory, such as the test of the primality of an integer, the so called 'prime
number theorem' and Hardy and Littlewood's conjecture about the asymptotic
number of representations of an even integer as a sum of two primes.Comment: 9 pages, RevTex, revised version, accepted for publication on PRA:
improvement in use of memory space for quantum primality test algorithm
further clarified and typos in the notation correcte
Geometric Strategy for the Optimal Quantum Search
We explore quantum search from the geometric viewpoint of a complex
projective space , a space of rays. First, we show that the optimal quantum
search can be geometrically identified with the shortest path along the
geodesic joining a target state, an element of the computational basis, and
such an initial state as overlaps equally, up to phases, with all the elements
of the computational basis. Second, we calculate the entanglement through the
algorithm for any number of qubits as the minimum Fubini-Study distance to
the submanifold formed by separable states in Segre embedding, and find that
entanglement is used almost maximally for large . The computational time
seems to be optimized by the dynamics as the geodesic, running across entangled
states away from the submanifold of separable states, rather than the amount of
entanglement itself.Comment: revtex, 10 pages, 7 eps figures, uses psfrag packag
Dynamical modelling of the elliptical galaxy NGC 2974
In this paper we analyse the relations between a previously described oblate
Jaffe model for an ellipsoidal galaxy and the observed quantities for NGC 2974,
and obtain the length and velocity scales for a relevant elliptical galaxy
model. We then derive the finite total mass of the model from these scales, and
finally find a good fit of an isotropic oblate Jaffe model by using the
Gauss-Hermite fit parameters and the observed ellipticity of the galaxy NGC
2974. The model is also used to predict the total luminous mass of NGC 2974,
assuming that the influence of dark matter in this galaxy on the image,
ellipticity and Gauss-Hermite fit parameters of this galaxy is negligible
within the central region, of radius Comment: 7 figure
Capability, opportunity, and motivation to enact hygienic practices in the early stages of the COVIDâ19 outbreak in the United Kingdom
Objectives
The COVIDâ19 pandemic is one of the greatest global health threats facing humanity in recent memory. This study aimed to explore influences on hygienic practices, a set of key transmission behaviours, in relation to the Capability, Opportunity, MotivationâBehaviour (COMâB) model of behaviour change (Michie et al., 2011).
Design
Data from the first wave of a longitudinal survey study were used, launched in the early stages of the UK COVIDâ19 pandemic.
Methods
Participants were 2025 adults aged 18 and older, representative of the UK population, recruited by a survey company from a panel of research participants. Participants selfâreported motivation, capability, and opportunity to enact hygienic practices during the COVIDâ19 outbreak.
Results
Using regression models, we found that all three COMâB components significantly predicted good hygienic practices, with motivation having the greatest influence on behaviour. Breaking this down further, the subscales psychological capability, social opportunity, and reflective motivation positively influenced behaviour. Reflective motivation was largely driving behaviour, with those highest in reflective motivation scoring 51% more on the measure of hygienic practices compared with those with the lowest scores.
Conclusions
Our findings have clear implications for the design of behaviour change interventions to promote hygienic practices. Interventions should focus on increasing and maintaining motivation to act and include elements that promote and maintain social support and knowledge of COVIDâ19 transmission. Groups in particular need of targeting for interventions to increase hygienic practices are males and those living in cities and suburbs
Basic concepts in quantum computation
Section headings: 1 Qubits, gates and networks 2 Quantum arithmetic and
function evaluations 3 Algorithms and their complexity 4 From interferometers
to computers 5 The first quantum algorithms 6 Quantum search 7 Optimal phase
estimation 8 Periodicity and quantum factoring 9 Cryptography 10 Conditional
quantum dynamics 11 Decoherence and recoherence 12 Concluding remarksComment: 37 pages, lectures given at les Houches Summer School on "Coherent
Matter Waves", July-August 199
T violation and the unidirectionality of time
An increasing number of experiments at the Belle, BNL, CERN, DA{\Phi}NE and
SLAC accelerators are confirming the violation of time reversal invariance (T).
The violation signifies a fundamental asymmetry between the past and future and
calls for a major shift in the way we think about time. Here we show that
processes which violate T symmetry induce destructive interference between
different paths that the universe can take through time. The interference
eliminates all paths except for two that represent continuously forwards and
continuously backwards time evolution. Evidence from the accelerator
experiments indicates which path the universe is effectively following. This
work may provide fresh insight into the long-standing problem of modeling the
dynamics of T violation processes. It suggests that T violation has previously
unknown, large-scale physical effects and that these effects underlie the
origin of the unidirectionality of time. It may have implications for the
Wheeler-DeWitt equation of canonical quantum gravity. Finally it provides a
view of the quantum nature of time itself.Comment: 24 pages, 5 figures. Final version accepted for publishing in
Foundations of Physics. The final publication is available at
http://www.springerlink.com/content/y3h4174jw2w78322
- âŠ