32 research outputs found

    On the origin and evolution of the material in 67P/Churyumov-Gerasimenko

    Get PDF
    International audiencePrimitive objects like comets hold important information on the material that formed our solar system. Several comets have been visited by spacecraft and many more have been observed through Earth- and space-based telescopes. Still our understanding remains limited. Molecular abundances in comets have been shown to be similar to interstellar ices and thus indicate that common processes and conditions were involved in their formation. The samples returned by the Stardust mission to comet Wild 2 showed that the bulk refractory material was processed by high temperatures in the vicinity of the early sun. The recent Rosetta mission acquired a wealth of new data on the composition of comet 67P/Churyumov-Gerasimenko (hereafter 67P/C-G) and complemented earlier observations of other comets. The isotopic, elemental, and molecular abundances of the volatile, semi-volatile, and refractory phases brought many new insights into the origin and processing of the incorporated material. The emerging picture after Rosetta is that at least part of the volatile material was formed before the solar system and that cometary nuclei agglomerated over a wide range of heliocentric distances, different from where they are found today. Deviations from bulk solar system abundances indicate that the material was not fully homogenized at the location of comet formation, despite the radial mixing implied by the Stardust results. Post-formation evolution of the material might play an important role, which further complicates the picture. This paper discusses these major findings of the Rosetta mission with respect to the origin of the material and puts them in the context of what we know from other comets and solar system objects

    The Sample Analysis at Mars Investigation and Instrument Suite

    Full text link

    Meteoritic krypton and barium versus the general isotopic anomalies in meteoritic xenon

    No full text
    The general isotopic anomalies in meteoritic xenon are described in detail. Where superior isotopic analyses exist, the xenon anomalies appear to be the same for all meteorites. In other cases there is fair evidence that the xenon examined is a mixture of "meteoritic" and contaminating atmospheric xenon. Two superior krypton analyses for carbonaceous chondrites show no anomalies which are significant in comparison with those for xenon. Barium from the Richardton chondrite is of normal isotopic composition. Cyclotron deuterons produce no Xe124 in a tellurium target, although the other xenon isotopes, which are in excess in meteorites, are produced. A number of possible mechanisms for producing the general anomalies are discussed and found wanting. One of them, due to KURODA and CAMERON, calls for excess terrestrial fission xenon and for transfer of solar xenon to the atmosphere. It thus involves reasonable processes, but, as we show, requires unreasonable yields for spontaneous fission. A mechanism we propose calls for excess meteoritic fission xenon and for gross mass fractionation of terrestrial xenon. It thus produces the observed anomalies accurately, but by somewhat unlikely processes.</p

    The Genesis solar-wind collector materials

    No full text
    Genesis (NASA Discovery Mission #5) is a sample return mission. Collectors comprised of ultra-high purity materials will be exposed to the solar wind and then returned to Earth for laboratory analysis. There is a suite of fifteen types of ultra-pure materials distributed among several locations. Most of the materials are mounted on deployable panels (`collector arrays'), with some as targets in the focal spot of an electrostatic mirror (the `concentrator'). Other materials are strategically placed on the spacecraft as additional targets of opportunity to maximize the area for solar-wind collection. Most of the collection area consists of hexagonal collectors in the arrays; approximately half are silicon, the rest are for solar-wind components not retained and/or not easily measured in silicon. There are a variety of materials both in collector arrays and elsewhere targeted for the analyses of specific solar-wind components. Engineering and science factors drove the selection process. Engineering required testing of physical properties such as the ability to withstand shaking on launch and thermal cycling during deployment. Science constraints included bulk purity, surface and interface cleanliness, retentiveness with respect to individual solar-wind components, and availability. A detailed report of material parameters planned as a resource for choosing materials for study will be published on a Genesis website, and will be updated as additional information is obtained. Some material is already linked to the Genesis plasma data website (genesis.lanl.gov). Genesis should provide a reservoir of materials for allocation to the scientific community throughout the 21st Century
    corecore