70 research outputs found

    Shaking youngsters and shaken adults: Female beetles eavesdrop on larval seed vibrations to make egg-laying decisions

    Get PDF
    Egg-laying decisions are critical for insects, and particularly those competing for limited resources. Sensory information used by females to mediate egg-laying decisions has been reported to be primarily chemical, but the role of vibration has received little attention. We tested the hypothesis that vibrational cues produced by feeding larvae occupying a seed influences egg-laying decisions amongst female cowpea beetles. This hypothesis is supported by three lines of evidence using two strains of the cowpea beetle (Callosobruchus maculatus), an Indian strain with choosy females and aggressively competing larvae and a Brazilian strain with less choosy females and larvae exhibiting an "accommodating" type of competition. First, in free-choice bioassays of seed selection, choosy Indian females selected control seeds (free of eggs, larvae, or egg-laying marker) over seeds with live larvae (free of eggs and egg-laying marker), but did not discriminate between control seeds and those with dead larvae. In contrast, less choosy Brazilian females showed no preference for seeds containing live or dead larvae over controls. Second, laser-doppler vibrometer recordings confirmed that larvae feeding inside seeds generate vibrations that are available to the female during egg-laying decisions. Third, during dichotomous choice experiments where artificial vibrations approximating those produced by feeding larvae were played back during seed selection, Indian females preferred immobile control seeds over vibrating seeds, but Brazilian females showed no preference. These results support the hypothesis that females use larval vibrations in their egg-laying decisions; whether these vibrations are passive cues exploited by the female, or active signals that 'steer' the behaviour of the female is unknown. We propose that vibration cues and signals could be important for host selection in insects, particularly those laying on substrates where visual or chemical cues may be unreliable. This seems to be the case with females of the cowpea beetle since visual cues are not important and chemical egg-marking does not last more than two weeks, allowing vibration cues to improve discrimination of egg-laying substrate particularly by choosy females

    Ação inseticida do extrato de Derris amazonica Killip para Cerotoma arcuatus Olivier (Coleoptera: Chrysomelidae

    Get PDF
    A abundância e o potencial inseticida de Derris amazonica e a necessidade de controle de Cerotoma arcuatus Olivier (Coleoptera: Chrysomelidae) na cultura do feijão-caupi (Vigna unguiculata L. Walp) estimularam a realização desta pesquisa, que objetivou avaliar a ação inseticida do extrato de D. amazonica a adultos de C. arcuatus em condições de laboratório. Os bioensaios testaram as vias de intoxicação por ingestão de folhas contaminadas, contato com superfície contaminada e aplicação tópica, com delineamento experimental inteiramente casualizado, com quatro repetições. Os valores de mortalidade e consumo foliar dos insetos foram submetidos à análise de regressão, sendo utilizada a análise de Probit para determinação das CL50, da DL50 e dos TL50. O extrato de D. amazonica, contendo 3,7% de rotenona, foi tóxico para adultos de C. arcuatus via ingestão de folhas contaminadas (CL50=15,14 µL do extrato.mL-1 de água), superfície contaminada (CL50=0,45 µL do extrato.cm-2) e aplicação tópica (DL50=1,44 µL do extrato.g-1 do inseto). Mortalidades de adultos de C. arcuatus superiores a 80% e os menores tempos letais médios foram obtidos na concentração de 5% (v v-1) do extrato em todos os bioensaios. O consumo foliar de adultos de C. arcuatus foi inversamente proporcional a concentração do extrato quando expostos por via de ingestão foliar ou aplicação tópica, sendo inclusive observada inibição da alimentação dos indivíduos. O extrato de D. amazonica é tóxico para C. arcuatus e inibe a alimentação dos insetos a partir da concentração de 1% (v v-1).The abundance and insecticidal potential of Derris amazonica in addition to need of controlling Cerotoma arcuatus for bean crop stimulated this research. The objective of this work was to evaluate insecticide action of the extract of D. amazonica to adults of C. arcuatus in laboratory conditions. The bioassays were carried out using three distend methodologies: leaf intake, contact in treated surface (filter paper) and topical application. A completed randomized experimental design was used with four replications. Mortality values and leaf consumption of the insects were subjected to regression analyses, being the Probit analyses used to determine of the i.e., LC50, LT50 and LD50. The extract of D. amazonica containing 3.7% of rotenone was toxic to adults C. arcuatus when exposed to treated leaves (LC50 = 15.14 µl.mL-1), treated surface (LC50 = 0.45 µl.cm-2) and subjected to topical exposure (LD50 = 1.44 µl.g-1). In all bioassays the adults mortality was higher than 80% with lower median lethal times obtained with 5% (v.v-1) concentrations of the extract. Leaf consumption by adults C. arcuatus was inversely proportional to the concentration of the extract when exposed by leaf intake or topical application, also being observed inhibition of feeding individuals. The extract of D. amazonica is toxic to C. arcuatus and inhibits the feeding of insects from the concentration of 1% (v v-1)

    Male multiple matings and reproductive success in commodity-adapted strains of Sitophilus oryzae

    No full text
    Multiple matings occur in many species of stored-grain insect pests, such as the rice weevil Sitophilus oryzae (L.), with both female and male mating more than once and with more than one partner. Multiple female mating in S. oryzae increased lifetime fecundity by extending the period of time progeny were produced, but consequences of multiple male mating in S. oryzae were not yet studied although it is likely to increase male fitness by increasing offspring production. Here, the effects of polygynous mating on male mating behavior, success, and fitness were assessed in two strains of S. oryzae, one adapted to barley and another to wheat. Two insect strains were considered because they may differ in response depending on the host grain, which present distinct nutritional value to the insects. Mating by pairs formed between the two strains did not impact mating success, but wheat-adapted females exhibited longer mating duration, which was positively correlated with progeny production. Wheat-adapted males exhibited higher fertility than barley-adapted males. When male multiple matings were considered in successive polygynous matings, late matings led to lower non-cumulative values of progeny production, but higher cumulative performance, and wheat-adapted S. oryzae always performed better. Thus, male fitness and grain losses in wheat are higher than in barley, even when S. oryzae was adapted to the latter. © 2018, Springer-Verlag GmbH Germany, part of Springer Nature

    Enhanced activity of carbohydrate- and lipid-metabolizing enzymes in insecticide-resistant populations of the maize weevil, Sitophilus zeamais

    No full text
    Insecticide resistance is frequently associated with fitness disadvantages in the absence of insecticides. However, intense past selection with insecticides may allow the evolution of fitness modifier alleles that mitigate the cost of insecticide resistance and their consequent fitness disadvantages. Populations of Sitophilus zeamais with different levels of susceptibility to insecticides show differences in the accumulation and mobilization of energy reserves. These differences may allow S. zeamais to better withstand toxic compounds without reducing the beetles' reproductive fitness. Enzymatic assays with carbohydrate- and lipid-metabolizing enzymes were, therefore, carried out to test this hypothesis. Activity levels of trehalase, glycogen phosphorylase, lipase, glycosidase and amylase were determined in two insecticide-resistant populations showing (resistant cost) or not showing (resistant no-cost) associated fitness cost, and in an insecticide-susceptible population. Respirometry bioassays were also carried out with these weevil populations. The resistant no-cost population showed significantly higher body mass and respiration rate than the other two populations, which were similar. No significant differences in glycogen phosphorylase and glycosidase were observed among the populations. Among the enzymes studied, trehalase and lipase showed higher activity in the resistant cost population. The results obtained in the assays with amylase also indicate significant differences in activity among the populations, but with higher activity in the resistant no-cost population. The inverse activity trends of lipases and amylases in both resistant populations, one showing fitness disadvantage without insecticide exposure and the other not showing it, may underlay the mitigation of insecticide resistance physiological costs observed in the resistant no-cost population. The higher amylase activity observed in the resistant no-cost population may favor energy storage, preventing potential trade-offs between insecticide resistance mechanisms and basic physiological processes in this population, unlike what seems to take place in the resistant cost population

    Effect of coffee alkaloids and phenolics on egg-laying by the coffee leaf miner Leucoptera coffeella

    No full text
    The recognized importance of coffee alkaloids and phenolics mediating insect-plant interactions led to the present investigation aiming to test the hypothesis that the phenolics chlorogenic and caffeic acids and the alkaloid caffeine and some of its derivatives present in coffee leaves affect egg-laying by the coffee leaf miner Leucoptera (=Perileucoptera) coffeella (Guérin-Méneville & Perrottet) (Lepidoptera: Lyonetiidae), one of the main coffee pests in the Neotropical region. These phytochemicals were, therefore, quantified in leaves from 12 coffee genotypes and their effect on the egg-laying preference by the coffee leaf miner was assessed. Canonical variate analysis and partial canonical correlation provided evidence that increased leaf levels of caffeine favour egg-laying by the coffee leaf miner. An egg-laying preference bioassay was, therefore, carried out to specifically test this hypothesis using increasing caffeine concentrations sprayed on leaves of one of the coffee genotypes with the lowest level of this compound (i.e. Hybrid UFV 557-04 generated from a cross between Coffea racemosa Lour. and C. arabica L.). The results obtained allowed the recognition of a significant concentration-response relationship, providing support for the hypothesis that caffeine stimulates egg-laying by the coffee leaf miner in coffee leaves
    corecore