9 research outputs found

    Crop performance, nitrogen and water use in flooded and aerobic rice

    No full text
    Abstract Irrigated aerobic rice is a new system being developed for lowland areas with water shortage and for favorable upland areas with access to supplementary irrigation. It entails the cultivation of nutrient-responsive cultivars in nonsaturated soil with sufficient external inputs to reach yields of 70–80% of high-input flooded rice. To obtain insights into crop performance, water use, and N use of aerobic rice, a field experiment was conducted in the dry seasons of 2002 and 2003 in the Philippines. Cultivar Apo was grown under flooded and aerobic conditions at 0 and at 150 kg fertilizer N ha–1. The aerobic fields were flush irrigated when the soil water potential at 15-cm depth reached –30 kPa. A 15N isotope study was carried out in microplots within the 150-N plots to determine the fate of applied N. The yield under aerobic conditions with 150 kg N ha–1 was 6.3 t ha–1 in 2002 and 4.2 t ha–1 in 2003, and the irrigation water input was 778 mm in 2002 and 826 mm in 2003. Compared with flooded conditions, the yield was 15 and 39% lower, and the irrigation water use 36 and 41% lower in aerobic plots in 2002 and 2003, respectively. N content at 150 kg N ha–1 in leaves and total plant was nearly the same for aerobic and flooded conditions, indicating that crop growth under aerobic conditions was limited by water deficit and not by N deficit. Under aerobic conditions, average fertilizer N recovery was 22% in both the main field and the microplot, whereas under flooded conditions, it was 49% in the main field and 36% in the microplot. Under both flooded and aerobic conditions, the fraction of 15N that was determined in the soil after the growing season was 23%. Since nitrate contents in leachate water were negligible, we hypothesized that the N unaccounted for were gaseous losses. The N unaccounted for was higher under aerobic conditions than under flooded conditions. For aerobic rice, trials are suggested for optimizing dose and timing of N fertilizer. Also further improvements in water regime should be made to reduce crop water stress

    Grain Yield of Rice Cultivars and Lines Developed in the Philippines since 1966

    Get PDF
    Genetic improvement in grain yield has been intensively studied in wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), oat (Avena sativa L.), maize (Zea mays L.), and soybean [Glycine max (L.) Merr.]. Such information is limited in rice (Oryza sativa L.). The objective of this study was to determine the trend in the yield of rice cultivars–lines developed since 1966. Twelve cultivars–lines were grown at the International Rice Research Institute (IRRI) farm and the Philippine Rice Research Institute farm during the dry season of 1996. Seven cultivars–lines were grown at IRRI farm in the dry season of 1998. Growth analyses were performed at key growth stages, and yield and yield components were determined at physiological maturity. Regression analysis of yield versus year of release indicated an annual gain in rice yield of 75 to 81 kg ha-1, equivalent to 1% per year. The highest yields obtained with the most recently released cultivars was 9 to 10 Mg ha-1, which is equivalent to reported yields of IR8 and other early IRRI cultivars obtained in the late 1960s and early 1970s at these same sites. Therefore, the 1% annual increase in yield may not represent genetic gain in yield potential. The increasing trend in yield of cultivars released before 1980 was mainly due to the improvement in harvest index (HI), while an increase in total biomass was associated with yield trends for cultivars–lines developed after 1980. Results suggest that further increases in rice yield potential will likely occur through increasing biomass production rather than increasing HI
    corecore