77 research outputs found

    Alcohol Taking Situations among Inmates of a Deaddiction Centre in Tiruchirappalli

    Get PDF
    Alcohol is well known and well-studied to have addictive potential and causes or predisposes the consumer to various physical and psychological hazards.  The International Classification of Diseases and Health Problems 10th revision(ICD-10) defines alcohol dependence syndrome (ADS) as “a group of behaviour, cognitive and physiological phenomenon that develop after returning alcohol use and that usually include a strong wish to consume, difficulties in controlling its use, persist in its use despite harmful consequences, a higher priority given to alcohol use than to other activities and obligations, increased tolerance, and sometimes a physical withdrawal state”.  A person is said to be dependent on alcohol if he/she satisfy the above criteria for dependence.  According to theRelapse Prevention Model by Marlatt and Gordon's (1985) High-risk factors are the determinants of alcohol use. In this study, the researcher made an attempt to depict various types of high-risk situations found among the alcohol dependents in anundisclosed Deaddiction centre of Tiruchirappalli. High-risk situations are measured by using Inventory of Alcohol Taking Situation. Statistical analysis is done by using SPSS results are discussed in the full paper. Keywords: High-risk situations, Alcohol Dependence, Prevention, Alcohol Seeking situations

    Investigating the effectiveness of current and modified world health organization guidelines for the control of soil-transmitted helminth infections

    Get PDF
    Background. Considerable efforts have been made to better understand the effectiveness of large-scale preventive chemotherapy therapy for the control of morbidity caused by infection with soil-transmitted helminths (STHs): Ascaris lumbricoides, Trichuris trichiura, and the 2 hookworm species, Necator americanus and Ancylostoma duodenale. Current World Health Organization (WHO) guidelines for STH control include mass drug administration (MDA) programs based on prevalence measurements, aiming at reducing morbidity in pre-school-aged children (pre-SAC) and school-aged children (SAC) by lowering the prevalence of moderate- to heavy-intensity infections to <1%. Methods. We project the likely impact of following the current WHO guidelines and assess whether the WHO morbidity goals will be achieved across a range of transmission settings. We also investigate modifications that could be made to the current WHO treatment guidelines, and project their potential impacts in achieving morbidity and transmission control. Results. While the standard guidelines are sufficient at low transmission levels, community-wide treatment (ie, involving pre- SAC, SAC, and adults) is essential if WHO morbidity goals are to be met in moderate- to high-transmission settings. Moreover, removing the recommendation of decreasing the treatment frequency at midline (5-6 years after the start of MDA) further improves the likelihood of achieving morbidity control in SAC. Conclusions. We meld analyses based on 2 mathematical models of parasite transmission and control by MDA for the dominant STH species, to generate a unified treatment approach applicable across all settings, regardless of which STH infection is most common. We recommend clearly defined changes to the current WHO guidelines

    An extended mtDNA phylogeography for the alpine newt illuminates the provenance of introduced populations

    Get PDF
    Many herpetofauna species have been introduced outside of their native range. MtDNA barcoding is regularly used to determine the provenance of such populations. The alpine newt has been introduced across the Netherlands, the United Kingdom and Ireland. However, geographical mtDNA structure across the natural range of the alpine newt is still incompletely understood and certain regions are severely undersampled. We collect mtDNA sequence data of over seven hundred individuals, from both the native and the introduced range. The main new insights from our extended mtDNA phylogeography are that 1) haplotypes from Spain do not form a reciprocally monophyletic clade, but are nested inside the mtDNA clade that covers western and eastern Europe; and 2) haplotypes from the northwest Balkans form a monophyletic clade together with those from the Southern Carpathians and Apuseni Mountains. We also home in on the regions where the distinct mtDNA clades meet in nature. We show that four out of the seven distinct mtDNA clades that comprise the alpine newt are implicated in the introductions in the Netherlands, United Kingdom and Ireland. In several introduced localities, two distinct mtDNA clades co-occur. As these mtDNA clades presumably represent cryptic species, we urge that the extent of genetic admixture between them is assessed from genome-wide nuclear DNA markers. We mobilized a large number of citizen scientists in this project to support the collection of DNA samples by skin swabbing and underscore the effectiveness of this sampling technique for mtDNA barcoding

    Metabolic profiling stratifies colorectal cancer and reveals adenosylhomocysteinase as a therapeutic target

    Get PDF
    The genomic landscape of colorectal cancer (CRC) is shaped by inactivating mutations in tumour suppressors such as APC, and oncogenic mutations such as mutant KRAS. Here we used genetically engineered mouse models, and multimodal mass spectrometry-based metabolomics to study the impact of common genetic drivers of CRC on the metabolic landscape of the intestine. We show that untargeted metabolic profiling can be applied to stratify intestinal tissues according to underlying genetic alterations, and use mass spectrometry imaging to identify tumour, stromal and normal adjacent tissues. By identifying ions that drive variation between normal and transformed tissues, we found dysregulation of the methionine cycle to be a hallmark of APC-deficient CRC. Loss of Apc in the mouse intestine was found to be sufficient to drive expression of one of its enzymes, adenosylhomocysteinase (AHCY), which was also found to be transcriptionally upregulated in human CRC. Targeting of AHCY function impaired growth of APC-deficient organoids in vitro, and prevented the characteristic hyperproliferative/crypt progenitor phenotype driven by acute deletion of Apc in vivo, even in the context of mutant Kras. Finally, pharmacological inhibition of AHCY reduced intestinal tumour burden in ApcMin/+ mice indicating its potential as a metabolic drug target in CRC

    The evolving SARS-CoV-2 epidemic in Africa: Insights from rapidly expanding genomic surveillance

    Get PDF
    INTRODUCTION Investment in Africa over the past year with regard to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) sequencing has led to a massive increase in the number of sequences, which, to date, exceeds 100,000 sequences generated to track the pandemic on the continent. These sequences have profoundly affected how public health officials in Africa have navigated the COVID-19 pandemic. RATIONALE We demonstrate how the first 100,000 SARS-CoV-2 sequences from Africa have helped monitor the epidemic on the continent, how genomic surveillance expanded over the course of the pandemic, and how we adapted our sequencing methods to deal with an evolving virus. Finally, we also examine how viral lineages have spread across the continent in a phylogeographic framework to gain insights into the underlying temporal and spatial transmission dynamics for several variants of concern (VOCs). RESULTS Our results indicate that the number of countries in Africa that can sequence the virus within their own borders is growing and that this is coupled with a shorter turnaround time from the time of sampling to sequence submission. Ongoing evolution necessitated the continual updating of primer sets, and, as a result, eight primer sets were designed in tandem with viral evolution and used to ensure effective sequencing of the virus. The pandemic unfolded through multiple waves of infection that were each driven by distinct genetic lineages, with B.1-like ancestral strains associated with the first pandemic wave of infections in 2020. Successive waves on the continent were fueled by different VOCs, with Alpha and Beta cocirculating in distinct spatial patterns during the second wave and Delta and Omicron affecting the whole continent during the third and fourth waves, respectively. Phylogeographic reconstruction points toward distinct differences in viral importation and exportation patterns associated with the Alpha, Beta, Delta, and Omicron variants and subvariants, when considering both Africa versus the rest of the world and viral dissemination within the continent. Our epidemiological and phylogenetic inferences therefore underscore the heterogeneous nature of the pandemic on the continent and highlight key insights and challenges, for instance, recognizing the limitations of low testing proportions. We also highlight the early warning capacity that genomic surveillance in Africa has had for the rest of the world with the detection of new lineages and variants, the most recent being the characterization of various Omicron subvariants. CONCLUSION Sustained investment for diagnostics and genomic surveillance in Africa is needed as the virus continues to evolve. This is important not only to help combat SARS-CoV-2 on the continent but also because it can be used as a platform to help address the many emerging and reemerging infectious disease threats in Africa. In particular, capacity building for local sequencing within countries or within the continent should be prioritized because this is generally associated with shorter turnaround times, providing the most benefit to local public health authorities tasked with pandemic response and mitigation and allowing for the fastest reaction to localized outbreaks. These investments are crucial for pandemic preparedness and response and will serve the health of the continent well into the 21st century

    Prediction of fluid slip in cylindrical nanopores using equilibrium molecular simulations

    No full text
    We introduce an analytical method to predict the slip length (L s) in cylindrical nanopores using equilibrium molecular dynamics (EMD) simulations, following the approach proposed by Sokhan and Quirke for planar channels [39]. Using this approach, we determined the slip length of water in carbon nanotubes (CNTs) of various diameters. The slip length predicted from our method shows excellent agreement with the results obtained from nonequilibrium molecular dynamics (NEMD) simulations. The data show a monotonically decreasing slip length with an increasing nanotube diameter. The proposed EMD method can be used to precisely estimate slip length in high slip cylindrical systems, whereas, L s calculated from NEMD is highly sensitive to the velocity profile and may cause large statistical errors due to large velocity slip at the channel surface. We also demonstrated the validity of the EMD method in a BNNT-water system, where the slip length is very small compared to that in a CNT pore of similar diameter. The developed method enables us to calculate the interfacial friction coefficient directly from EMD simulations, while friction can be estimated using NEMD by performing simulations at various external driving forces, thereby increasing the overall computational time. The EMD analysis revealed a curvature dependence in the friction coefficient, which induces the slip length dependency on the tube diameter. Conversely, in flat graphene nanopores, both L s and friction coefficient show no strong dependency on the channel width.Green Open Access added to TU Delft Institutional Repository ‘You share, we take care!’ – Taverne project https://www.openaccess.nl/en/you-share-we-take-care Otherwise as indicated in the copyright section: the publisher is the copyright holder of this work and the author uses the Dutch legislation to make this work public.Process and Energ

    Water flow in carbon nanotubes: The effect of tube flexibility and thermostat

    No full text
    Although the importance of temperature control in nonequilibrium molecular dynamics simulations is widely accepted, the consequences of the thermostatting approach in the case of strongly confined fluids are underappreciated. We show the strong influence of the thermostatting method on the water transport in carbon nanotubes (CNTs) by considering simulations in which the system temperature is controlled via the walls or via the fluid. Streaming velocities and mass flow rates are found to depend on the tube flexibility and on the thermostatting algorithm, with flow rates up to 20% larger when the walls are flexible. The larger flow rates in flexible CNTs are explained by a lower friction coefficient between water and the wall. Despite the lower friction, a larger solid-fluid interaction energy is found for flexible CNTs than for rigid ones. Furthermore, a comparison of thermostat schemes has shown that the Berendsen and Nosé-Hoover thermostats result in very similar transport rates, while lower flow rates are found under the influence of the Langevin thermostat. These findings illustrate the significant influence of the thermostatting methods on the simulated confined fluid transport.Process and Energ
    • 

    corecore