1,261 research outputs found
Delocalization Transition of a Rough Adsorption-Reaction Interface
We introduce a new kinetic interface model suitable for simulating
adsorption-reaction processes which take place preferentially at surface
defects such as steps and vacancies. As the average interface velocity is taken
to zero, the self- affine interface with Kardar-Parisi-Zhang like scaling
behaviour undergoes a delocalization transition with critical exponents that
fall into a novel universality class. As the critical point is approached, the
interface becomes a multi-valued, multiply connected self-similar fractal set.
The scaling behaviour and critical exponents of the relevant correlation
functions are determined from Monte Carlo simulations and scaling arguments.Comment: 4 pages with 6 figures, new comment
Total photoproduction cross-section at very high energy
In this paper we apply to photoproduction total cross-section a model we have
proposed for purely hadronic processes and which is based on QCD mini-jets and
soft gluon re-summation. We compare the predictions of our model with the HERA
data as well as with other models. For cosmic rays, our model predicts
substantially higher cross-sections at TeV energies than models based on
factorization but lower than models based on mini-jets alone, without soft
gluons. We discuss the origin of this difference.Comment: 13 pages, 9 figures. Accepted for publication in EPJC. Changes
concern added references, clarifications of the Soft Gluon Resummation method
used in the paper, and other changes requested by the Journal referee which
do not change the results of the original versio
Ratios of and Meson Decay Constants in Relativistic Quark Model
We calculate the ratios of and meson decay constants by applying the
variational method to the relativistic hamiltonian of the heavy meson. We adopt
the Gaussian and hydrogen-type trial wave functions, and use six different
potentials of the potential model. We obtain reliable results for the ratios,
which are similar for different trial wave functions and different potentials.
The obtained ratios show the deviation from the nonrelativistic scaling law,
and they are in a pretty good agreement with the results of the Lattice
calculations.Comment: 13 pages, 1 Postscript figur
Measurement of adsorption of a single component from the liquid phase : modelling investigation and sensitivity analysis
In this work, we consider an alternative approach for the measurement of adsorption from the liquid phase. Consider a mixture consisting of a non-adsorbed component (B) and an adsorbed component (A) present at some low concentration. Initially, a feed of component B only flows through a column packed with an adsorbent. Then, the feed is switched to the mixture of A and B. As soon as the mixture enters the column, there will be a reduction in the outlet flow rate as component A leaves the liquid phase and passes into the adsorbed phase. There are three stages to this work. The first is to develop overall and component balances to show how the amount adsorbed of component A can be determined from the variation in the column outlet flow rate. The second is to determine the actual variation in the column outlet flow rate for both plug flow and axial-dispersed plug flow. The final stage is to consider the suitability of a gravity-fed system to deliver the feed to the column. An analysis of the results shows that the experimental arrangement should be able to accurately monitor adsorption from the liquid phase where the mass fraction of the solute is of the order of 1%: the limiting experimental factor is how constant the volumetric flow rate of the liquid feed can be maintained
Deflection and Rotation of CMEs from Active Region 11158
Between the 13 and 16 of February 2011 a series of coronal mass ejections
(CMEs) erupted from multiple polarity inversion lines within active region
11158. For seven of these CMEs we use the Graduated Cylindrical Shell (GCS)
flux rope model to determine the CME trajectory using both Solar Terrestrial
Relations Observatory (STEREO) extreme ultraviolet (EUV) and coronagraph
images. We then use the Forecasting a CME's Altered Trajectory (ForeCAT) model
for nonradial CME dynamics driven by magnetic forces, to simulate the
deflection and rotation of the seven CMEs. We find good agreement between the
ForeCAT results and the reconstructed CME positions and orientations. The CME
deflections range in magnitude between 10 degrees and 30 degrees. All CMEs
deflect to the north but we find variations in the direction of the
longitudinal deflection. The rotations range between 5\mydeg and 50\mydeg with
both clockwise and counterclockwise rotations occurring. Three of the CMEs
begin with initial positions within 2 degrees of one another. These three CMEs
all deflect primarily northward, with some minor eastward deflection, and
rotate counterclockwise. Their final positions and orientations, however,
respectively differ by 20 degrees and 30 degrees. This variation in deflection
and rotation results from differences in the CME expansion and radial
propagation close to the Sun, as well as the CME mass. Ultimately, only one of
these seven CMEs yielded discernible in situ signatures near Earth, despite the
active region facing near Earth throughout the eruptions. We suggest that the
differences in the deflection and rotation of the CMEs can explain whether each
CME impacted or missed the Earth.Comment: 18 pages, 6 figures, accepted in Solar Physic
Expansion in perfect groups
Let Ga be a subgroup of GL_d(Q) generated by a finite symmetric set S. For an
integer q, denote by Ga_q the subgroup of Ga consisting of the elements that
project to the unit element mod q. We prove that the Cayley graphs of Ga/Ga_q
with respect to the generating set S form a family of expanders when q ranges
over square-free integers with large prime divisors if and only if the
connected component of the Zariski-closure of Ga is perfect.Comment: 62 pages, no figures, revision based on referee's comments: new ideas
are explained in more details in the introduction, typos corrected, results
and proofs unchange
Can filesharers be triggered by economic incentives? Results of an experiment
Illegal filesharing on the internet leads to considerable financial losses for artists and copyright owners as well as producers and sellers of music. Thus far, measures to contain this phenomenon have been rather restrictive. However, there are still a considerable number of illegal systems, and users are able to decide quite freely between legal and illegal downloads because the latter are still difficult to sanction. Recent economic approaches account for the improved bargaining position of users. They are based on the idea of revenue-splitting between professional sellers and peers. In order to test such an innovative business model, the study reported in this article carried out an experiment with 100 undergraduate students, forming five small peer-to-peer networks.The networks were confronted with different economic conditions.The results indicate that even experienced filesharers hold favourable attitudes towards revenue-splitting.They seem to be willing to adjust their behaviour to different economic conditions
Fuzzy cluster validation using the partition negentropy criterion
The final publication is available at Springer via http://dx.doi.org/10.1007/978-3-642-04277-5_24Proceedings of the 19th International Conference, Limassol, Cyprus, September 14-17, 2009We introduce the Partition Negentropy Criterion (PNC) for cluster validation. It is a cluster validity index that rewards the average normality of the clusters, measured by means of the negentropy, and penalizes the overlap, measured by the partition entropy. The PNC is aimed at finding well separated clusters whose shape is approximately Gaussian. We use the new index to validate fuzzy partitions in a set of synthetic clustering problems, and compare the results to those obtained by the AIC, BIC and ICL criteria. The partitions are obtained by fitting a Gaussian Mixture Model to the data using the EM algorithm. We show that, when the real clusters are normally distributed, all the criteria are able to correctly assess the number of components, with AIC and BIC
allowing a higher cluster overlap. However, when the real cluster distributions are not Gaussian (i.e. the distribution assumed by the mixture model) the PNC outperforms the other indices, being able to correctly
evaluate the number of clusters while the other criteria (specially AIC and BIC) tend to overestimate it.This work has been partially supported with funds from
MEC BFU2006-07902/BFI, CAM S-SEM-0255-2006 and CAM/UAM project CCG08-UAM/TIC-442
Olfactory implants: international opinion paper on emerging technologies and clinical applications
Abstract
Olfactory dysfunction affects a large proportion of the general population and causes significant personal and societal burden.
At present, there are limited treatment options available. Though as yet experimental and untested in people, olfactory implants
are a novel form of neuroprosthesis, modelled on existing implants for other sensory deficits such as hearing loss. Advances in
this field have been rapid, yet there have been no unified efforts to collate current knowledge or guide such advances towards
maximum patient benefit. In this Opinion Paper, leaders in the field have come together to provide an overview of current and
emerging knowledge and technology relating to olfactory implants. In an effort to guide innovation towards maximum patient
benefit, we also provide expert agreed statements on theoretical clinical aspects of olfactory implantation, including patient se-
lection, implantation sites and potential complications, as well as post-implantation support requirements. Technical aspects will
be discussed, with a clinical, device orientated focus. Finally, the ethics of olfactory implantation will be considered. We hope this
document will serve as a useful roadmap to guide future clinical and basic research in the field
Observing the First Stars and Black Holes
The high sensitivity of JWST will open a new window on the end of the
cosmological dark ages. Small stellar clusters, with a stellar mass of several
10^6 M_sun, and low-mass black holes (BHs), with a mass of several 10^5 M_sun
should be directly detectable out to redshift z=10, and individual supernovae
(SNe) and gamma ray burst (GRB) afterglows are bright enough to be visible
beyond this redshift. Dense primordial gas, in the process of collapsing from
large scales to form protogalaxies, may also be possible to image through
diffuse recombination line emission, possibly even before stars or BHs are
formed. In this article, I discuss the key physical processes that are expected
to have determined the sizes of the first star-clusters and black holes, and
the prospect of studying these objects by direct detections with JWST and with
other instruments. The direct light emitted by the very first stellar clusters
and intermediate-mass black holes at z>10 will likely fall below JWST's
detection threshold. However, JWST could reveal a decline at the faint-end of
the high-redshift luminosity function, and thereby shed light on radiative and
other feedback effects that operate at these early epochs. JWST will also have
the sensitivity to detect individual SNe from beyond z=10. In a dedicated
survey lasting for several weeks, thousands of SNe could be detected at z>6,
with a redshift distribution extending to the formation of the very first stars
at z>15. Using these SNe as tracers may be the only method to map out the
earliest stages of the cosmic star-formation history. Finally, we point out
that studying the earliest objects at high redshift will also offer a new
window on the primordial power spectrum, on 100 times smaller scales than
probed by current large-scale structure data.Comment: Invited contribution to "Astrophysics in the Next Decade: JWST and
Concurrent Facilities", Astrophysics & Space Science Library, Eds. H.
Thronson, A. Tielens, M. Stiavelli, Springer: Dordrecht (2008
- …
