54 research outputs found

    Enhanced Bound State Formation in Two Dimensions via Stripe-Like Hopping Anisotropies

    Full text link
    We have investigated two-electron bound state formation in a square two-dimensional t-J-U model with hopping anisotropies for zero electron density; these anisotropies are introduced to mimic the hopping energies similar to those expected in stripe-like arrangements of holes and spins found in various transition metal oxides. In this report we provide analytical solutions to this problem, and thus demonstrate that bound-state formation occurs at a critical exchange coupling, J_c, that decreases to zero in the limit of extreme hopping anisotropy t_y/t_x -> 0. This result should be contrasted with J_c/t = 2 for either a one-dimensional chain, or a two-dimensional plane with isotropic hopping. Most importantly, this behaviour is found to be qualitatively similar to that of two electrons on the two-leg ladder problem in the limit of t_interchain/t_intrachain -> 0. Using the latter result as guidance, we have evaluated the pair correlation function, thus determining that the bound state corresponds to one electron moving along one chain, with the second electron moving along the opposite chain, similar to two electrons confined to move along parallel, neighbouring, metallic stripes. We emphasize that the above results are not restricted to the zero density limit - we have completed an exact diagonalization study of two holes in a 12 X 2 two-leg ladder described by the t-J model and have found that the above-mentioned lowering of the binding energy with hopping anisotropy persists near half filling.Comment: 6 pages, 3 eps figure

    Dynamical Properties of Two Coupled Hubbard Chains at Half-filling

    Full text link
    Using grand canonical Quantum Monte Carlo (QMC) simulations combined with Maximum Entropy analytic continuation, as well as analytical methods, we examine the one- and two-particle dynamical properties of the Hubbard model on two coupled chains at half-filling. The one-particle spectral weight function, A(k,ω)A({\bf k},\omega), undergoes a qualitative change with interchain hopping tt_\perp associated with a transition from a four-band insulator to a two-band insulator. A simple analytical model based on the propagation of exact rung singlet states gives a good description of the features at large tt_\perp. For smaller tt_\perp, A(k,ω)A({\bf k}, \omega) is similar to that of the one-dimensional model, with a coherent band of width the effective antiferromagnetic exchange JJ reasonably well-described by renormalized spin-wave theory. The coherent band rides on a broad background of width several times the parallel hopping integral tt, an incoherent structure similar to that found in calculations on both the one- and two-dimensional models. We also present QMC results for the two-particle spin and charge excitation spectra, and relate their behavior to the rung singlet picture for large tt_\perp and to the results of spin-wave theory for small tt_\perp.Comment: 9 pages + 10 postscript figures, submitted to Phys.Rev.B, revised version with isotropic t_perp=t data include

    The ground state of the two-leg Hubbard ladder: a density--matrix renormalization group study

    Full text link
    We present density-matrix renormalization group results for the ground state properties of two-leg Hubbard ladders. The half-filled Hubbard ladder is an insulating spin-gapped system, exhibiting a crossover from a spin-liquid to a band-insulator as a function of the interchain hopping matrix element. When the system is doped, there is a parameter range in which the spin gap remains. In this phase, the doped holes form singlet pairs and the pair-field and the "4kF4 k_F" density correlations associated with pair density fluctuations decay as power laws, while the "2kF2 k_F" charge density wave correlations decay exponentially. We discuss the behavior of the exponents of the pairing and density correlations within this spin gapped phase. Additional one-band Luttinger liquid phases which occur in the large interband hopping regime are also discussed.Comment: 14 pages, 18 figures, uses Revtex with epsfig to include the figure

    Phase Diagram of the 1D Anderson Lattice

    Full text link
    We map out the phase diagram of the one--dimensional Anderson lattice by studying the ground state magnetization as a function of band--filling using the density matrix renormalization group technique. For strong coupling, we find that the quarter--filled system has an S=0 ground state with strong antiferromagnetic correlations. As additional electrons are put in, we find first a ferromagnetic phase, as reported by M\"{o}ller and W\"{o}lfle, and then a phase in which the ground state has total spin S=0S=0. Within this S=0S=0 phase, we find RKKY oscillations in the spin--spin correlation functions.Comment: REVTEX manuscript with 5 Postcript figures included in uu file. Submitted to Phys. Rev.

    Electronic Correlations Near a Peierls-CDW Transition

    Full text link
    Results of a phenomenological Monte carlo calculation for a 2D electron-phonon Holstein model near a Peierls-CDW transition are presented. Here the zero Matsubara frequency part of the phonon action is dominant and we approximated it by a phenomenological form that as an Ising-like Peierls-CDW transition. The resulting model is studied on a 32 by 32 lattice. The single particle spectral weight A(k,\omega), the density of states N(\omega), and the real part of the conductivity \sigma_1(\omega) all show evidence of a pseudogap which develops in the low-energy electronic degrees of freedom as the Peierls-CDW transition is approachedComment: 14 pages, 7 figure

    Microscopic description of d-wave superconductivity by Van Hove nesting in the Hubbard model

    Get PDF
    We devise a computational approach to the Hubbard model that captures the strong coupling dynamics arising when the Fermi level is at a Van Hove singularity in the density of states. We rely on an approximate degeneracy among the many-body states accounting for the main instabilities of the system (antiferromagnetism, d-wave superconductivity). The Fermi line turns out to be deformed in a manner consistent with the pinning of the Fermi level to the Van Hove singularity. For a doping rate δ0.2\delta \sim 0.2, the ground state is characterized by d-wave symmetry, quasiparticles gapped only at the saddle-points of the band, and a large peak at zero momentum in the d-wave pairing correlations.Comment: 4 pages, 2 Postscript figure

    The spin and charge gaps of the half-filled N-leg Kondo ladders

    Full text link
    In this work, we study N-leg Kondo ladders at half-filling through the density matrix renormalization group. We found non-zero spin and charge gaps for any finite number of legs and Kondo coupling J>0J>0. We also show evidence of the existence of a quantum critical point in the two dimensional Kondo lattice model, in agreement with previous works. Based on the binding energy of two holes, we did not find evidence of superconductivity in the 2D Kondo lattice model close to half-filling.Comment: 4 pages, 1 table, 3 fig

    Ground State Properties of the Doped 3-Leg t-J Ladder

    Full text link
    Results for a doped 3-leg t-J ladder obtained using the density matrix renormalization group are reported. At low hole doping, the holes form a dilute gas with a uniform density. The momentum occupation of the odd band shows a sharp decrease at a large value of k_F similar to the behavior of a lightly doped t-J chain, while the even modes appear gapped. The spin-spin correlations decay as a power law consistent with the absence of a spin gap, but the pair field correlations are negligible. At larger doping we find evidence for a spin gap and as x increases further we find 3-hole diagonal domain walls. In this regime there are pair field correlations and the internal pair orbital has d_x^2-y^2 - like symmetry. However, the pair field correlations appear to fall exponentially at large distances.Comment: 14 pages, 11 postscript figure

    Haldane-Gapped Spin Chains as Luttinger Liquids: Correlation Functions at Finite Field

    Full text link
    We study the behavior of Heisenberg, antiferromagnetic, integer-spin chains in the presence of a magnetic field exceeding the attendant spin gap. For temperatures much smaller than the gap, the spin chains exhibit Luttinger liquid behavior. We compute exactly both the corresponding Luttinger parameter and the Fermi velocity as a function of magnetic field. This enables the computation of a number of correlators from which we derive the spin conductance, the expected form of the dynamic structure factor relevant to inelastic neutron scattering experiments, and NMR relaxation rates. We also comment upon the robustness of the magnetically induced gapless phase both to finite temperature and finite couplings between neighbouring chains.Comment: 32 pages, 8 figures; published version includes additions discussing the robustness of the magnetically induced gapless phase to ordering between chains as well as the relationship between the spin-1 chains and spin-1/2 ladders in the presence of a magnetic fiel

    The transition between hole-pairs and four-hole clusters in four-leg tJ ladders

    Full text link
    Holes weakly doped into a four-leg \tj ladder bind in pairs. At dopings exceeding a critical doping of δc1/8\delta_c\simeq {1/8} four hole clusters are observed to form in DMRG calculations. The symmetry of the ground state wavefunction does not change and we are able to reproduce this behavior qualitatively with an effective bosonic model in which the four-leg ladder is represented as two coupled two-leg ladders and hole-pairs are mapped on hard core bosons moving along and between these ladders. At lower dopings, δ<δc\delta<\delta_c, a one dimensional bosonic representation for hole-pairs works and allows us to calculate accurately the Luttinger liquid parameter \krho, which takes the universal value \krho=1 as half-filling is approached
    corecore