910 research outputs found

    Bio-banding in Sport: Applications to Competition, Talent Identification, and Strength and Conditioning of Youth Athletes

    Get PDF
    Bio-banding is the process of grouping athletes on the basis of attributes associated with growth and maturation, rather than chronological age. Children of the same age may vary considerably in biological maturation with some individuals maturing well in advance or delay of their peers. The timing of maturation has important implications for competition, talent identification and training. Increased awareness and interest in the subject of maturation has sparked a renewed interest in the study and application of bio-banding. This overview describes the purpose and process of bio-banding, potential benefits and limitations, and also presents some recent advances in its application in youth sports

    Incidence of schizophrenia and other psychoses in ethnic minority groups: results from the MRC AESOP Study

    Get PDF
    Background. The incidence of schizophrenia in the African-Caribbean population in England is reported to be raised. We sought to clarify whether (a) the rates of other psychotic disorders are increased, (b) whether psychosis is increased in other ethnic minority groups, and (c) whether particular age or gender groups are especially at risk. Method. We identified all people (n=568) aged 16-64 years presenting to secondary services with their first psychotic symptoms in three well-defined English areas (over a 2-year period in Southeast London and Nottingham and a 9-month period in Bristol). Standardized incidence rates and incidence rate ratios (IRR) for all major psychosis syndromes for all main ethnic groups were calculated. Results. We found remarkably high IRRs for both schizophrenia and manic psychosis in both African-Caribbeans (schizophrenia 9.1, manic psychosis 8.0) and Black Africans (schizophrenia 5.8, manic psychosis 6.2) in men and women. IRRs in other ethnic minority groups were modestly increased as were rates for depressive psychosis and other psychoses in all minority groups. These raised rates were evident in all age groups in our study. Conclusions. Ethnic minority groups are at increased risk for all psychotic illnesses but African- Caribbeans and Black Africans appear to be at especially high risk for both schizophrenia and mania. These findings suggest that (a) either additional risk factors are operating in African- Caribbeans and Black Africans or that these factors are particularly prevalent in these groups, and that (b) such factors increase risk for schizophrenia and mania in these groups

    Experimental Vacuum Squeezing in Rubidium Vapor via Self-Rotation

    Full text link
    We report the generation of optical squeezed vacuum states by means of polarization self-rotation in rubidium vapor following a proposal by Matsko et al. [Phys. Rev. A 66, 043815 (2002)]. The experimental setup, involving in essence just a diode laser and a heated rubidium gas cell, is simple and easily scalable. A squeezing of 0.85+-0.05 dB was achieved

    The role of caretakers in disease dynamics

    Full text link
    One of the key challenges in modeling the dynamics of contagion phenomena is to understand how the structure of social interactions shapes the time course of a disease. Complex network theory has provided significant advances in this context. However, awareness of an epidemic in a population typically yields behavioral changes that correspond to changes in the network structure on which the disease evolves. This feedback mechanism has not been investigated in depth. For example, one would intuitively expect susceptible individuals to avoid other infecteds. However, doctors treating patients or parents tending sick children may also increase the amount of contact made with an infecteds, in an effort to speed up recovery but also exposing themselves to higher risks of infection. We study the role of these caretaker links in an adaptive network models where individuals react to a disease by increasing or decreasing the amount of contact they make with infected individuals. We find that pure avoidance, with only few caretaker links, is the best strategy for curtailing an SIS disease in networks that possess a large topological variability. In more homogeneous networks, disease prevalence is decreased for low concentrations of caretakers whereas a high prevalence emerges if caretaker concentration passes a well defined critical value.Comment: 8 pages, 9 figure

    A transformation system for definite programs based on termination analysis

    Full text link

    Quantum Communication in Rindler Spacetime

    Full text link
    A state that an inertial observer in Minkowski space perceives to be the vacuum will appear to an accelerating observer to be a thermal bath of radiation. We study the impact of this Davies-Fulling-Unruh noise on communication, particularly quantum communication from an inertial sender to an accelerating observer and private communication between two inertial observers in the presence of an accelerating eavesdropper. In both cases, we establish compact, tractable formulas for the associated communication capacities assuming encodings that allow a single excitation in one of a fixed number of modes per use of the communications channel. Our contributions include a rigorous presentation of the general theory of the private quantum capacity as well as a detailed analysis of the structure of these channels, including their group-theoretic properties and a proof that they are conjugate degradable. Connections between the Unruh channel and optical amplifiers are also discussed.Comment: v3: 44 pages, accepted in Communications in Mathematical Physic

    A Method for Compiling and Executing Expressive Assertions

    Get PDF
    Programming with assertions constitutes an effective tool to detect and correct programming errors. The ability of executing formal specifications is essential in order to test automatically a program with respect to its assertions. However, formal specifications may describe recursive models which are difficult to identify so current assertion checkers limit, in a considerable way, the expressivity of the assertion language. In this paper, we are interested in showing how transformational synthesis can help to execute “expressive” assertions of the form ∀x(r(x) ⇔ QyR(x, y)) where x is a set of variables to be instantiated at execution time, Q is an existential or universal quantifier and R a quantifier free formula in the language of a particular first-order theory A we call assertion context. The class of assertion contexts is interesting because it presents a balance between expressiveness for writing assertions and existence of effective methods for executing them by means of synthesized (definite) logic programs

    Topology and correlations in structured scale-free networks

    Get PDF
    We study a recently introduced class of scale-free networks showing a high clustering coefficient and non-trivial connectivity correlations. We find that the connectivity probability distribution strongly depends on the fine details of the model. We solve exactly the case of low average connectivity, providing also exact expressions for the clustering and degree correlation functions. The model also exhibits a lack of small world properties in the whole parameters range. We discuss the physical properties of these networks in the light of the present detailed analysis.Comment: 10 pages, 9 figure

    Quantization and Compressive Sensing

    Get PDF
    Quantization is an essential step in digitizing signals, and, therefore, an indispensable component of any modern acquisition system. This book chapter explores the interaction of quantization and compressive sensing and examines practical quantization strategies for compressive acquisition systems. Specifically, we first provide a brief overview of quantization and examine fundamental performance bounds applicable to any quantization approach. Next, we consider several forms of scalar quantizers, namely uniform, non-uniform, and 1-bit. We provide performance bounds and fundamental analysis, as well as practical quantizer designs and reconstruction algorithms that account for quantization. Furthermore, we provide an overview of Sigma-Delta (ΣΔ\Sigma\Delta) quantization in the compressed sensing context, and also discuss implementation issues, recovery algorithms and performance bounds. As we demonstrate, proper accounting for quantization and careful quantizer design has significant impact in the performance of a compressive acquisition system.Comment: 35 pages, 20 figures, to appear in Springer book "Compressed Sensing and Its Applications", 201
    corecore