98 research outputs found

    Nonequilibrium Transport through a Kondo Dot in a Magnetic Field: Perturbation Theory

    Get PDF
    Using nonequilibrium perturbation theory, we investigate the nonlinear transport through a quantum dot in the Kondo regime in the presence of a magnetic field. We calculate the leading logarithmic corrections to the local magnetization and the differential conductance, which are characteristic of the Kondo effect out of equilibrium. By solving a quantum Boltzmann equation, we determine the nonequilibrium magnetization on the dot and show that the application of both a finite bias voltage and a magnetic field induces a novel structure of logarithmic corrections not present in equilibrium. These corrections lead to more pronounced features in the conductance, and their form calls for a modification of the perturbative renormalization group.Comment: 16 pages, 7 figure

    Leadership training to improve adenoma detection rate in screening colonoscopy: A randomised trial

    Get PDF
    Objective Suboptimal adenoma detection rate (ADR) at colonoscopy is associated with increased risk of interval colorectal cancer. It is uncertain how ADR might be improved. We compared t

    Low temperature transport in AC-driven Quantum Dots in the Kondo regime

    Full text link
    We present a fully nonequilibrium calculation of the low temperature transport properties of a quantum dot in the Kondo regime when an AC potential is applied to the gate voltage. We solve a time dependent Anderson model with finite on-site Coulomb interaction. The interaction self-energy is calculated up to second order in perturbation theory in the on-site interaction, in the context of the Keldysh non-equilibrium technique, and the effect of the AC voltage is taken into account exactly for all ranges of AC frequencies and AC intensities. The obtained linear conductance and time-averaged density of states of the quantum dot evolve in a non trivial way as a function of the AC frequency and AC intensity of the harmonic modulation.Comment: 30 pages,7 figure

    Low Energy Chiral Lagrangian in Curved Space-Time from the Spectral Quark Model

    Full text link
    We analyze the recently proposed Spectral Quark Model in the light of Chiral Perturbation Theory in curved space-time. In particular, we calculate the chiral coefficients L1,...,L10L_1, ..., L_{10}, as well as the coefficients L11L_{11}, L12L_{12}, and L13L_{13}, appearing when the model is coupled to gravity. The analysis is carried for the SU(3) case. We analyze the pattern of chiral symmetry breaking as well as elaborate on the fulfillment of anomalies. Matching the model results to resonance meson exchange yields the relation between the masses of the scalar, tensor and vector mesons, Mf0=Mf2=2MV=43/NcπfπM_{f_0}=M_{f_2}=\sqrt{2} M_V= 4 \sqrt{3 /N_c} \pi f_\pi. Finally, the large-NcN_c limit suggests the dual relations in the vector and scalar channels, MV=MS=26/NcπfπM_V=M_S= 2 \sqrt{6 /N_c} \pi f_\pi and S1/2=<r2>V1/2=2Nc/fπ=0.59fm^{1/2}_S = < r^2 >^{1/2}_V = 2 \sqrt{N_c} / f_\pi = 0.59 {\rm fm} .Comment: 18 pages, no figure

    Effect of an Electron-phonon Interaction on the One-electron Spectral Weight of a d-wave Superconductor

    Full text link
    We analyze the effects of an electron-phonon interaction on the one-electron spectral weight A(k,omega) of a d_{x^2-y^2} superconductor. We study the case of an Einstein phonon mode with various momentum-dependent electron-phonon couplings and compare the structure produced in A(k,omega) with that obtained from coupling to the magnetic pi-resonant mode. We find that if the strength of the interactions are adjusted to give the same renormalization at the nodal point, the differences in A(k,omega) are generally small but possibly observable near k=(pi,0).Comment: 10 pages, 14 figures (color versions of Figs. 2,4,10,11,12 available upon request

    Dynamical 1/N approach to time-dependent currents through quantum dots

    Full text link
    A systematic truncation of the many-body Hilbert space is implemented to study how electrons in a quantum dot attached to conducting leads respond to time-dependent biases. The method, which we call the dynamical 1/N approach, is first tested in the most unfavorable case, the case of spinless fermions (N=1). We recover the expected behavior, including transient ringing of the current in response to an abrupt change of bias. We then apply the approach to the physical case of spinning electrons, N=2, in the Kondo regime for the case of infinite intradot Coulomb repulsion. In agreement with previous calculations based on the non-crossing approximation (NCA), we find current oscillations associated with transitions between Kondo resonances situated at the Fermi levels of each lead. We show that this behavior persists for a more realistic model of semiconducting quantum dots in which the Coulomb repulsion is finite.Comment: 18 pages, 7 eps figures, discussion extended for spinless electrons and typo

    1-- and 0++ heavy four-quark and molecule states in QCD

    Get PDF
    We estimate the masses of the 1^{--} heavy four-quark and molecule states by combining exponential Laplace (LSR) and finite energy (FESR) sum rules known perturbatively to lowest order (LO) in alpha_s but including non-perturbative terms up to the complete dimension-six condensate contributions. This approach allows to fix more precisely the value of the QCD continuum threshold (often taken ad hoc) at which the optimal result is extracted. We use double ratio of sum rules (DRSR) for determining the SU(3) breakings terms. We also study the effects of the heavy quark mass definitions on these LO results. The SU(3) mass-splittings of about (50 - 110) MeV and the ones of about (250 - 300) MeV between the lowest ground states and their 1st radial excitations are (almost) heavy-flavour independent. The mass predictions summarized in Table 4 are compared with the ones in the literature (when available) and with the three Y_c(4260,~4360,~4660) and Y_b(10890) 1^{--} experimental candidates. We conclude (to this order approximation) that the lowest observed state cannot be a pure 1^{--} four-quark nor a pure molecule but may result from their mixings. We extend the above analyzes to the 0^{++} four-quark and molecule states which are about (0.5-1) GeV heavier than the corresponding 1^{--} states, while the splittings between the 0^{++} lowest ground state and the 1st radial excitation is about (300-500) MeV. We complete the analysis by estimating the decay constants of the 1^{--} and 0^{++} four-quark states which are tiny and which exhibit a 1/M_Q behaviour. Our predictions can be further tested using some alternative non-perturbative approaches or/and at LHCb and some other hadron factories.Comment: 13 pages, 15 figures, 4 tables, version to appear in PLB (more general choice of the interpolating currents, estimate of the four-quark meson decay constants, new references added, slight numerical changes for the 0++ mass predictions

    The evolution of language: a comparative review

    Get PDF
    For many years the evolution of language has been seen as a disreputable topic, mired in fanciful &quot;just so stories&quot; about language origins. However, in the last decade a new synthesis of modern linguistics, cognitive neuroscience and neo-Darwinian evolutionary theory has begun to make important contributions to our understanding of the biology and evolution of language. I review some of this recent progress, focusing on the value of the comparative method, which uses data from animal species to draw inferences about language evolution. Discussing speech first, I show how data concerning a wide variety of species, from monkeys to birds, can increase our understanding of the anatomical and neural mechanisms underlying human spoken language, and how bird and whale song provide insights into the ultimate evolutionary function of language. I discuss the ‘‘descended larynx’ ’ of humans, a peculiar adaptation for speech that has received much attention in the past, which despite earlier claims is not uniquely human. Then I will turn to the neural mechanisms underlying spoken language, pointing out the difficulties animals apparently experience in perceiving hierarchical structure in sounds, and stressing the importance of vocal imitation in the evolution of a spoken language. Turning to ultimate function, I suggest that communication among kin (especially between parents and offspring) played a crucial but neglected role in driving language evolution. Finally, I briefly discuss phylogeny, discussing hypotheses that offer plausible routes to human language from a non-linguistic chimp-like ancestor. I conclude that comparative data from living animals will be key to developing a richer, more interdisciplinary understanding of our most distinctively human trait: language
    corecore