256 research outputs found

    Coastal oceanography and sedimentology in New Zealand, 1967-91.

    Get PDF
    This paper reviews research that has taken place on physical oceanography and sedimentology on New Zealand's estuaries and the inner shelf since c. 1967. It includes estuarine sedimentation, tidal inlets, beach morphodynamics, nearshore and inner shelf sedimentation, tides and coastal currents, numerical modelling, short-period waves, tsunamis, and storm surges. An extensive reference list covering both published and unpublished material is included. Formal teaching and research programmes dealing with coastal landforms and the processes that shape them were only introduced to New Zealand universities in 1964; the history of the New Zealand Journal of Marine and Freshwater Research parallels and chronicles the development of physical coastal science in New Zealand, most of which has been accomplished in last 25 years

    Dilatation of saphenous vein grafts by nitric oxide

    Get PDF
    Objectives:To investigate firstly whether flow-dependent vasodilation is maintained in vein grafts, and secondly whether nitric oxide donors dilate vein grafts to improve the flow through graft stenoses.Design, materials and methods:The vasodilatation of mature patent vein grafts, in response to reactive hyperaemia and glyceryl trinitrate (GTN), was assessed by the change in external diameter using duplex ultrasonography. The severity (ratio of proximal systolic velocity, V1, to peak systolic velocity at the stenosis, V2, of vein graft stenoses was determined by duplex ultrasonography before and after 24 h of local application of GTN patches.Results:In post-occlusion hyperaemia the diameter of patent distal vein grafts (n = 7) increased to a maximum of 112±1.9% of resting diameter after 2 min, p = 0.026. The diameter increased further to 117±2.5% of the resting value 5 min after oral GTN (n = 5), p = 0.007. The velocity ratio, V2/V1, through graft stenoses (n = 6) decreased by 20 ± 5% after application of GTN patches, principally as a result of reduction in V2, mean difference 0.8, p = 0.15. The changes in response to GTN were more evident for proximal than distal vein graft stenoses.Conclusion:Flow-induced vasodilatation responses, which have been attributed to the endothelial release of nitric oxide, are maintained in patent vein grafts: the grafts dilate even further in response to GTN. The application of GTN patches close to a vein graft stenosis appears to reduce the velocity ratio through vein graft stenoses. GTN patches might be used to reduce the risk of graft occlusion when there is a delay between the detection and the treatment of haemodynamically significant graft stenoses

    Effective Lagrangian Approach to the Theory of Eta Photoproduction in the N∗(1535)N^{*}(1535) Region

    Full text link
    We investigate eta photoproduction in the N∗(1535)N^{*}(1535) resonance region within the effective Lagrangian approach (ELA), wherein leading contributions to the amplitude at the tree level are taken into account. These include the nucleon Born terms and the leading tt-channel vector meson exchanges as the non-resonant pieces. In addition, we consider five resonance contributions in the ss- and uu- channel; besides the dominant N∗(1535)N^{*}(1535), these are: N∗(1440),N∗(1520),N∗(1650)N^{*}(1440),N^{*}(1520),N^{*}(1650) and N∗(1710)N^{*}(1710). The amplitudes for the π∘\pi^\circ and the η\eta photoproduction near threshold have significant differences, even as they share common contributions, such as those of the nucleon Born terms. Among these differences, the contribution to the η\eta photoproduction of the ss-channel excitation of the N∗(1535)N^{*}(1535) is the most significant. We find the off-shell properties of the spin-3/2 resonances to be important in determining the background contributions. Fitting our effective amplitude to the available data base allows us to extract the quantity χΓηA1/2/ΓT\sqrt{\chi \Gamma_\eta} A_{1/2}/\Gamma_T, characteristic of the photoexcitation of the N∗(1535)N^{*}(1535) resonance and its decay into the η\eta-nucleon channel, of interest to precise tests of hadron models. At the photon point, we determine it to be (2.2±0.2)×10−1GeV−1(2.2\pm 0.2)\times 10^{-1} GeV^{-1} from the old data base, and (2.2±0.1)×10−1GeV−1(2.2\pm 0.1) \times 10^{-1} GeV^{-1} from a combination of old data base and new Bates data. We obtain the helicity amplitude for N∗(1535)→γpN^{*}(1535)\rightarrow \gamma p to be A1/2=(97±7)×10−3GeV−1/2A_{1/2}=(97\pm 7)\times 10^{-3} GeV^{-1/2} from the old data base, and A1/2=(97±6)×10−3GeV−1/2A_{1/2}=(97\pm 6)\times 10^{-3} GeV^{-1/2} from the combination of the old data base and new Bates data, compared with the results of the analysis of pion photoproduction yielding 74±1174\pm 11, in the same units.Comment: 43 pages, RevTeX, 9 figures available upon request, to appear in Phys. Rev.

    The transfer of diatoms from freshwater to footwear materials: An experimental study assessing transfer, persistence, and extraction methods for forensic reconstruction

    Get PDF
    In recent years there has been growing interest in environmental forms of trace evidence, and ecological trace evidence collected from footwear has proved valuable within casework. Simultaneously, there has been growing awareness of the need for empirical experimentation to underpin forensic inferences. Diatoms are unicellular algae, and each cell (or ‘frustule’) consists of two valves which are made of silica, a robust material that favours their preservation both in sediments and within forensic scenarios. A series of experiments were carried out to investigate the transfer and persistence of diatoms upon common footwear materials, a recipient surface that has historically been overlooked by studies of persistence. The effectiveness of two novel extraction techniques (jet rinsing, and heating and agitation with distilled water) was compared to the established extraction technique of hydrogen peroxide digestion, for a suite of five common footwear materials: canvas, leather, and ‘suede’ (representing upper materials), and rubber and polyurethane (representing sole materials). It was observed that the novel extraction technique of heating and agitation with distilled water did not extract fewer diatom valves, or cause increased fragmentation of valves, when compared to peroxide digestion, suggesting that the method may be viable where potentially hazardous chemical reactions may be encountered with the peroxide digestion method. Valves could be extracted from all five footwear materials after 3 min of immersion, and more valves were extracted from the rougher, woven upper materials than the smoother sole materials. Canvas yielded the most valves (a mean of 2511/cm2) and polyurethane the fewest (a mean of 15/cm2). The persistence of diatoms on the three upper materials was addressed with a preliminary pilot investigation, with ten intervals sampled between 0 and 168 h. Valves were seen to persist in detectable quantities after 168 h on all three upper materials. However, some samples produced slides with no valves, and the earliest time after which no diatom valves were found was 4 h after the transfer. Analysis of the particle size distributions over time, by image analysis, suggests that the retention of diatoms may be size-selective; after 168 h, no particles larger than 200 ÎŒm2 could be found on the samples of canvas, and > 95% of the particles on the samples of suede were less than or equal to 200 ÎŒm2. A pilot investigation into the effects of immersion interval was carried out upon samples of canvas. Greater numbers of valves were extracted from the samples with longer immersion intervals, but even after 30 s, > 500 valves could be recovered per cm2, suggesting that footwear may be sampled for diatoms even if the contact with a water body may have been brief. These findings indicate that, if the variability within and between experimental runs can be addressed, there is significant potential for diatoms to be incorporated into the trace analysis of footwear and assist forensic reconstructions

    Emergence and maintenance of actionable genetic drivers at medulloblastoma relapse

    Get PDF
    Background Less than 5% of medulloblastoma (MB) patients survive following failure of contemporary radiation-based therapies. Understanding the molecular drivers of medulloblastoma relapse (rMB) will be essential to improve outcomes. Initial genome-wide investigations have suggested significant genetic divergence of the relapsed disease. Methods We undertook large-scale integrated characterization of the molecular features of rMB—molecular subgroup, novel subtypes, copy number variation (CNV), and driver gene mutation. 119 rMBs were assessed in comparison with their paired diagnostic samples (n = 107), alongside an independent reference cohort sampled at diagnosis (n = 282). rMB events were investigated for association with outcome post-relapse in clinically annotated patients (n = 54). Results Significant genetic evolution occurred over disease-course; 40% of putative rMB drivers emerged at relapse and differed significantly between molecular subgroups. Non-infant MBSHH displayed significantly more chromosomal CNVs at relapse (TP53 mutation-associated). Relapsed MBGroup4 demonstrated the greatest genetic divergence, enriched for targetable (eg, CDK amplifications) and novel (eg, USH2A mutations) events. Importantly, many hallmark features of MB were stable over time; novel subtypes (>90% of tumors) and established genetic drivers (eg, SHH/WNT/P53 mutations; 60% of rMB events) were maintained from diagnosis. Critically, acquired and maintained rMB events converged on targetable pathways which were significantly enriched at relapse (eg, DNA damage signaling) and specific events (eg, 3p loss) predicted survival post-relapse. Conclusions rMB is characterised by the emergence of novel events and pathways, in concert with selective maintenance of established genetic drivers. Together, these define the actionable genetic landscape of rMB and provide a basis for improved clinical management and development of stratified therapeutics, across disease-course

    What is the Oxygen Isotope Composition of Venus? The Scientific Case for Sample Return from Earth’s “Sister” Planet

    Get PDF
    Venus is Earth’s closest planetary neighbour and both bodies are of similar size and mass. As a consequence, Venus is often described as Earth’s sister planet. But the two worlds have followed very different evolutionary paths, with Earth having benign surface conditions, whereas Venus has a surface temperature of 464 °C and a surface pressure of 92 bar. These inhospitable surface conditions may partially explain why there has been such a dearth of space missions to Venus in recent years.The oxygen isotope composition of Venus is currently unknown. However, this single measurement (Δ17O) would have first order implications for our understanding of how large terrestrial planets are built. Recent isotopic studies indicate that the Solar System is bimodal in composition, divided into a carbonaceous chondrite (CC) group and a non-carbonaceous (NC) group. The CC group probably originated in the outer Solar System and the NC group in the inner Solar System. Venus comprises 41% by mass of the inner Solar System compared to 50% for Earth and only 5% for Mars. Models for building large terrestrial planets, such as Earth and Venus, would be significantly improved by a determination of the Δ17O composition of a returned sample from Venus. This measurement would help constrain the extent of early inner Solar System isotopic homogenisation and help to identify whether the feeding zones of the terrestrial planets were narrow or wide.Determining the Δ17O composition of Venus would also have significant implications for our understanding of how the Moon formed. Recent lunar formation models invoke a high energy impact between the proto-Earth and an inner Solar System-derived impactor body, Theia. The close isotopic similarity between the Earth and Moon is explained by these models as being a consequence of high-temperature, post-impact mixing. However, if Earth and Venus proved to be isotopic clones with respect to Δ17O, this would favour the classic, lower energy, giant impact scenario.We review the surface geology of Venus with the aim of identifying potential terrains that could be targeted by a robotic sample return mission. While the potentially ancient tessera terrains would be of great scientific interest, the need to minimise the influence of venusian weathering favours the sampling of young basaltic plains. In terms of a nominal sample mass, 10 g would be sufficient to undertake a full range of geochemical, isotopic and dating studies. However, it is important that additional material is collected as a legacy sample. As a consequence, a returned sample mass of at least 100 g should be recovered.Two scenarios for robotic sample return missions from Venus are presented, based on previous mission proposals. The most cost effective approach involves a “Grab and Go” strategy, either using a lander and separate orbiter, or possibly just a stand-alone lander. Sample return could also be achieved as part of a more ambitious, extended mission to study the venusian atmosphere. In both scenarios it is critical to obtain a surface atmospheric sample to define the extent of atmosphere-lithosphere oxygen isotopic disequilibrium. Surface sampling would be carried out by multiple techniques (drill, scoop, “vacuum-cleaner” device) to ensure success. Surface operations would take no longer than one hour.Analysis of returned samples would provide a firm basis for assessing similarities and differences between the evolution of Venus, Earth, Mars and smaller bodies such as Vesta. The Solar System provides an important case study in how two almost identical bodies, Earth and Venus, could have had such a divergent evolution. Finally, Venus, with its runaway greenhouse atmosphere, may provide data relevant to the understanding of similar less extreme processes on Earth. Venus is Earth’s planetary twin and deserves to be better studied and understood. In a wider context, analysis of returned samples from Venus would provide data relevant to the study of exoplanetary systems
    • 

    corecore