1,785 research outputs found

    Note on the energy-momentum tensor for general mixed tensor-spinor fields

    Full text link
    This note provides an explicit proof of the equivalence of the Belinfante's energy-momentum tensor and the metric energy-momentum tensor for general mixed tensor-spinor fields.Comment: 7 pages, title changed, typos corrected, accepted for publication in Communications in Theoretical Physic

    Voluntary binocular gaze-shifts in the plane of regard: Dynamics of version and vergence

    Get PDF
    We studied the dynamics of voluntary, horizontal, binocular gaze-shifts between pairs of continuously visible, real three-dimensional targets. Subjects were stabilized on a biteboard to allow full control of target angles, which were made to differ only in distance (pure vergence), only in direction (pure version; conjugate saccades) or in both distance and direction (disjunctive saccades). A wide range of changes in vergence (0-25 deg) and version (0-65 deg) was recorded to study the dynamics of disjunctive saccades, described until now for limited ranges, throughout the horizontal oculomotor range within manual working space, and to study the velocity-duration-amplitude relations ("main sequence") of disjunctive vs conjugate saccades. Pure vergence was almost never observed; divergence, especially, was always associated with saccades. Likewise, horizontal saccades were never strictly conjugate, they always contained a transient divergence-convergence sequence. The amplitude and velocity of these transient components varied systematically with saccadic size. In combined version-vergence movements, vergence was, in general, accelerated and shortened as a function of increasing version. This effect was fairly uniform for divergence, which appeared to increase in velocity by about as much as the transient peak divergent velocity of the version saccade. The intrasaccadic fraction of divergence increased from about 50% to close to 100% as a function of increasing version. For convergence, saccades up to about 20 deg were also accelerating; in this case it appeared as if the transient peak convergent velocity of the version saccade was added to the basic convergence velocity. For larger saccades this effect was partly counteracted by the penetration of an initial divergence associated with the saccade. This initial divergence delayed and slowed down convergence. The intrasaccadic fraction of convergence varied between about 40% and 70%. In disjunctive saccades the individual eyes did not follow the main-sequence parameters of conjugate saccades of comparable sizes, except for the eye that moved with the combination "abduction and divergence". For all other combinations of vergence and version, disjunctive saccades had lower peak velocities and longer durations than conjugate saccades. As a consequence, disjunctive version was also slower than conjugate version. Thus, while version accelerates vergence, vergence slows down version: in the generalized case of three-dimensional gaze-shifts, peak velocities and durations are in between those of the limiting cases of pure version and pure vergence. We conclude that, within manual working space, binocular gaze-shifts are effected by the highly integrated action of conjugate and disjunctive mechanisms, both of which are expressed preferentially in fast, saccadic movements

    Entangled Light in Moving Frames

    Full text link
    We calculate the entanglement between a pair of polarization-entangled photon beams as a function of the reference frame, in a fully relativistic framework. We find the transformation law for helicity basis states and show that, while it is frequency independent, a Lorentz transformation on a momentum-helicity eigenstate produces a momentum-dependent phase. This phase leads to changes in the reduced polarization density matrix, such that entanglement is either decreased or increased, depending on the boost direction, the rapidity, and the spread of the beam.Comment: 4 pages and 3 figures. Minor corrections, footnote on optimal basis state

    A Nonparametric Method for the Derivation of α/β Ratios from the Effect of Fractionated Irradiations

    Get PDF
    Multifractionation isoeffect data are commonly analysed under the assumption that cell survival determines the observed tissue or tumour response, and that it follows a linear-quadratic dose dependence. The analysis is employed to derive the α/β ratios of the linear-quadratic dose dependence, and different methods have been developed for this purpose. A common method uses the so-called Fe plot. A more complex but also more rigorous method has been introduced by Lam et al. (1979). Their method, which is based on numerical optimization procedures, is generalized and somewhat simplified in the present study. Tumour-regrowth data are used to explain the nonparametric procedure which provides α/β ratios without the need to postulate analytical expressions for the relationship between cell survival and regrowth delay

    Microscopic Description of Band Structure at Very Extended Shapes in the A ~ 110 Mass Region

    Full text link
    Recent experiments have confirmed the existence of rotational bands in the A \~ 110 mass region with very extended shapes lying between super- and hyper-deformation. Using the projected shell model, we make a first attempt to describe quantitatively such a band structure in 108Cd. Excellent agreement is achieved in the dynamic moment of inertia J(2) calculation. This allows us to suggest the spin values for the energy levels, which are experimentally unknown. It is found that at this large deformation, the sharply down-sloping orbitals in the proton i_{13/2} subshell are responsible for the irregularity in the experimental J(2), and the wave functions of the observed states have a dominant component of two-quasiparticles from these orbitals. Measurement of transition quadrupole moments and g-factors will test these findings, and thus can provide a deeper understanding of the band structure at very extended shapes.Comment: 4 pages, 3 eps figures, final version accepted by Phys. Rev. C as a Rapid Communicatio

    The extreme colliding-wind system Apep : resolved imagery of the central binary and dust plume in the infrared

    Get PDF
    The recent discovery of a spectacular dust plume in the system 2XMM J160050.7–514245 (referred to as ‘Apep’) suggested a physical origin in a colliding-wind binary by way of the ‘Pinwheel’ mechanism. Observational data pointed to a hierarchical triple-star system, however, several extreme and unexpected physical properties seem to defy the established physics of such objects. Most notably, a stark discrepancy was found in the observed outflow speed of the gas as measured spectroscopically in the line-of-sight direction compared to the proper motion expansion of the dust in the sky plane. This enigmatic behaviour arises at the wind base within the central Wolf–Rayet binary: a system that has so far remained spatially unresolved. Here, we present an updated proper motion study deriving the expansion speed of Apep’s dust plume over a 2-year baseline that is four times slower than the spectroscopic wind speed, confirming and strengthening the previous finding. We also present the results from high angular resolution near-infrared imaging studies of the heart of the system, revealing a close binary with properties matching a Wolf–Rayet colliding-wind system. Based on these new observational constraints, an improved geometric model is presented yielding a close match to the data, constraining the orbital parameters of the Wolf–Rayet binary and lending further support to the anisotropic wind model

    Dynamics of false vacuum bubbles: beyond the thin shell approximation

    Full text link
    We numerically study the dynamics of false vacuum bubbles which are inside an almost flat background; we assumed spherical symmetry and the size of the bubble is smaller than the size of the background horizon. According to the thin shell approximation and the null energy condition, if the bubble is outside of a Schwarzschild black hole, unless we assume Farhi-Guth-Guven tunneling, expanding and inflating solutions are impossible. In this paper, we extend our method to beyond the thin shell approximation: we include the dynamics of fields and assume that the transition layer between a true vacuum and a false vacuum has non-zero thickness. If a shell has sufficiently low energy, as expected from the thin shell approximation, it collapses (Type 1). However, if the shell has sufficiently large energy, it tends to expand. Here, via the field dynamics, field values of inside of the shell slowly roll down to the true vacuum and hence the shell does not inflate (Type 2). If we add sufficient exotic matters to regularize the curvature near the shell, inflation may be possible without assuming Farhi-Guth-Guven tunneling. In this case, a wormhole is dynamically generated around the shell (Type 3). By tuning our simulation parameters, we could find transitions between Type 1 and Type 2, as well as between Type 2 and Type 3. Between Type 2 and Type 3, we could find another class of solutions (Type 4). Finally, we discuss the generation of a bubble universe and the violation of unitarity. We conclude that the existence of a certain combination of exotic matter fields violates unitarity.Comment: 40 pages, 41 figure

    The function of visual search and memory in sequential looking tasks

    Get PDF
    Eye and head movements were recorded as unrestrained subjects tapped or only looked at nearby targets. Scanning patterns were the same in both tasks: subjects looked at each target before tapping it; visual search had similar speeds and gaze-shift accuracies. Looking however, took longer and, unlike tapping, benefitted little from practice. Looking speeded up more than tapping when memory load was reduced: memory was more efficient during tapping. Conclusion: eye movements made when only looking are different from those made when tapping. Visual search functions as a separate process, incorporated into both tasks: it can be used to improve performance when memory load is heavy

    Open Issues on the Synthesis of Evolved Stellar Populations at Ultraviolet Wavelengths

    Full text link
    In this paper we briefly review three topics that have motivated our (and others') investigations in recent years within the context of evolutionary population synthesis techniques. These are: The origin of the FUV up-turn in elliptical galaxies, the age-metallicity degeneracy, and the study of the mid-UV rest-frame spectra of distant red galaxies. We summarize some of our results and present a very preliminary application of a UV grid of theoretical spectra in the analysis of integrated properties of aged stellar populations. At the end, we concisely suggest how these topics can be tackled once the World Space Observatory enters into operation in the midst of this decade.Comment: 8 pages, 4 figures, accepted for publication in Astrophysics & Space Science, UV Universe special issu
    • …
    corecore