14 research outputs found

    Dynamic Antarctic ice sheet during the early to mid-Miocene.

    Get PDF
    Geological data indicate that there were major variations in Antarctic ice sheet volume and extent during the early to mid-Miocene. Simulating such large-scale changes is problematic because of a strong hysteresis effect, which results in stability once the ice sheets have reached continental size. A relatively narrow range of atmospheric CO2 concentrations indicated by proxy records exacerbates this problem. Here, we are able to simulate large-scale variability of the early to mid-Miocene Antarctic ice sheet because of three developments in our modeling approach. (i) We use a climate-ice sheet coupling method utilizing a high-resolution atmospheric component to account for ice sheet-climate feedbacks. (ii) The ice sheet model includes recently proposed mechanisms for retreat into deep subglacial basins caused by ice-cliff failure and ice-shelf hydrofracture. (iii) We account for changes in the oxygen isotopic composition of the ice sheet by using isotope-enabled climate and ice sheet models. We compare our modeling results with ice-proximal records emerging from a sedimentological drill core from the Ross Sea (Andrill-2A) that is presented in a companion article. The variability in Antarctic ice volume that we simulate is equivalent to a seawater oxygen isotope signal of 0.52-0.66‰, or a sea level equivalent change of 30-36 m, for a range of atmospheric CO2 between 280 and 500 ppm and a changing astronomical configuration. This result represents a substantial advance in resolving the long-standing model data conflict of Miocene Antarctic ice sheet and sea level variability

    Pliocene Ice Sheet Modelling Intercomparison Project (PLISMIP) : experimental design

    Get PDF
    During the mid-Pliocene warm period (3.264 to 3.025 million years ago), global mean temperature was similar to that predicted for the next century and atmospheric carbon dioxide concentrations were slightly higher than today. Sea level was also higher than today, implying a reduction in the extent of the ice sheets. Thus, the mid-Pliocene warm period (mPWP) provides a unique testing ground to investigate the stability of the Earth's ice sheets and their contribution to sea level in a warmer-than-modern world. Climate models and ice sheet models can be used to enhance our understanding of ice sheet stability; however, uncertainties associated with different ice-sheet modelling frameworks mean that a rigorous comparison of numerical ice sheet model simulations for the Pliocene is essential. As an extension to the Pliocene Model Intercomparison Project (PlioMIP; Haywood et al., 2010, 2011a), the Pliocene Ice Sheet Modelling Intercomparison Project (PLISMIP) will provide the first assessment as to the ice sheet model dependency of ice sheet predictions for the mPWP. Here we outline the PLISMIP experimental design and initialisation conditions that have been adopted to simulate the Greenland and Antarctic ice sheets under present-day and warm mid-Pliocene conditions. Not only will this project provide a new benchmark in the simulation of ice sheets in a past warm period, but the analysis of model sensitivity to various uncertainties could directly inform future predictions of ice sheet and sea level change

    TESTING ORDERED CATEGORICAL DATA IN 2×k 2 \times k TABLES BY THE STATISTICS WITH ORTHONORMAL SCORE VECTORS

    No full text
    A class of tests is proposed for detecting the difference of two populations in an ordinal categorical table. Characteristics of the proposed tests are studied. It will be shown that the new tests may have higher powers for a class of non-linear responses than the other conventional tests

    Antarctic Climate Evolution (ACE) Research Initiative

    No full text
    The Antarctic Climate Evolution (ACE) project is a new international research initiative to study the climate and glacial history of Antarctica by linking climate and ice sheet modeling studies with geophysical surveys and geological studies on and around the Antarctic continent (Fig. 1). The rationale for the ACE programme, outlined herein, was developed and refined, before, during and after the Antarctic Earth Science Symposium in Erice, Italy, in September 2001 (Cooper et al., 2002, Florindo et al., 2003)

    Life in a temperate Polar sea: a unique taphonomic window on the structure of a Late Cretaceous Arctic marine ecosystem

    Get PDF
    As the earth faces a warming climate, the rock record reminds us that comparable climatic scenarios have occurred before. In the Late Cretaceous, Arctic marine organisms were not subject to frigid temperatures but still contended with seasonal extremes in photoperiod. Here, we describe an unusual fossil assemblage from Devon Island, Arctic Canada, that offers a snapshot of a ca 75 Myr ago marine palaeoecosystem adapted to such conditions. Thick siliceous biogenic sediments and glaucony sands reveal remarkably persistent high primary productivity along a high-latitude Late Cretaceous coastline. Abundant fossil faeces demonstrate that this planktonic bounty supported benthic invertebrates and large, possibly seasonal, vertebrates in short food chains. These ancient organisms filled trophic roles comparable to those of extant Arctic species, but there were fundamental differences in resource dynamics. Whereas most of the modern Arctic is oligotrophic and structured by resources from melting sea ice, we suggest that forested terrestrial landscapes helped support the ancient marine community through high levels of terrigenous organic input
    corecore