861 research outputs found

    INTERACTIONS OF HUMAN ORAL CELLS WITH ORAL BACTERIAL

    Get PDF
    poster abstractIntroduction: Streptococcus mutans is the main etiological cause of den-tal caries, and it has been shown that individuals who smoke have increased dental caries. S. mutans is known to bind to or interact with MG63 osteo-blasts. However, very little is known about the effects of tobacco directly on these bacteria on their ability to affect human pulp MG63 osteoblasts. We are hypothesizing that tobacco upregulates the expression of pro-inflammatory cytokines and MMPs to increase the pathogenic potential of S. mutans. The objective of this research project is to investigate the effects that nicotine, cigarette smoke condensate (CSC), and dissolvable smokeless tobacco (DST)-extract treated bacterial cells have on humanMG63 osteo-blasts, in respect to their release of pro-inflammatory and anti-inflammatory cytokines, as well as MMP expression. In addition, the effects of the S. mutans cells will be examined for the ability to affect MG63 osteoblast growth. The long-term goal is to develop treatment modalities to reduce the effects of smoking on dental caries. Materials and Methods: S. mutans UA159 was incubated in Tryptic Soy Broth (TSB), with the following concentrations: 2 mg/mL nicotine, 0.125 mg/mL CSC, 100 uL/3 mL DST-extract, and a 0 mg/mL control group. The cultures were grown in the presence of the tobacco products for 8 h at 37oC in 5% CO2, and centrifuged to isolate cells and supernatants. The cells were washed and heat-killed for 1 h at 60oC. Human MG63 osteoblasts were iso-lated from extracted teeth, and cell passages 3-8 will be used. The tobacco-treated S. mutans cells and supernatants will be incubated with the osteo-blasts in culture plates for 72 h and cytokine expression evaluated by re-verse transcriptase polymerase chain reaction. Results: The protein concentration of each tobacco-treated sample was found. The undiluted concentrations of the nicotine- and CSC-treated cells were slightly lower and the DST-treated cells was slightly higher than the control cells. The undiluted nicotine (p<0.05) and DST-treated supernatants were higher than the control, while the CSC supernatant protein concentra-tion was lower. From our previous studies, it was found that nicotine in-creases bacteriocin production of S. mutans, so we might hypothesize that nicotine induces bacteriocin secretion, thus increasing dental caries

    Estimating Watershed Evapotranspiration with PASS. Part I: Inferring Root-Zone Moisture Conditions Using Satellite Dat

    Get PDF
    A model framework for parameterized subgrid-scale surface fluxes (PASS) has been modified and applied as PASS1 to use satellite data, models, and limited surface observations to infer root-zone available moisture (RAM) content with high spatial resolution over large terrestrial areas. Data collected during the 1997 Cooperative Atmosphere–Surface Exchange Study field campaign at the Atmospheric Boundary Layer Experiments site in the Walnut River watershed in Kansas were used to evaluate applications of the PASS1 approach to infer soil moisture content at times of satellite overpasses during cloudless conditions. Data from Advanced Very High Resolution Radiometers on the NOAA-14 satellite were collected and then adjusted for atmospheric effects by using LOWTRAN7 and local atmospheric profile data from radiosondes. The input variables for PASS1 consisted of normalized difference vegetation index and surface radiant temperature, together with representative observations of downwelling solar irradiance, air temperature, relative humidity, and wind speed. Surface parameters, including roughness length, albedo, surface conductance for water vapor, and the ratio of soil heat flux to net radiation, were estimated with parameterizations suitable for the area using satellite data and land-use information; pixel-specific near-surface meteorological conditions such as air temperature, vapor pressure, and wind speed were adjusted according to local surface forcing; and RAM content was estimated using surface energy balance and aerodynamic methods. Comparisons with radar cumulative precipitation observations and in situ soil moisture estimates indicated that the spatial and temporal variations of RAM at the times of satellite overpasses were simulated reasonably well by PASS1

    Wettability influences cell behavior on superhydrophobic surfaces with different topographies

    Get PDF
    Surface wettability and topography are recognized as critical factors influencing cell behavior on biomaterials. So far only few works have reported cell responses on surfaces exhibiting extreme wettability in combination with surface topography. The goal of this work is to study whether cell behavior on superhydrophobic surfaces is influenced by surface topography and polymer type. Biomimetic superhydrophobic rough surfaces of polystyrene and poly(l-lactic acid) with different micro/nanotopographies were obtained from smooth surfaces using a simple phase-separation based method. Total protein was quantified and showed a less adsorption of bovine serum albumin onto rough surfaces as compared to smooth surfaces of the same material. The mouse osteoblastic MC3T3-E1 cell line and primary bovine articular chondrocytes were used to study cell attachment and proliferation. Cells attached and proliferate better in the smooth surfaces. The superhydrophobic surfaces allowed cells to adhere but inhibited their proliferation. This study indicates that surface wettability, rather than polymer type or the topography of the superhydrophobic surfaces, is a critical factor in determining cell behavior

    Pion propagation in real time field theory at finite temperature

    Get PDF
    We describe how the thermal counterpart of a vacuum two-point function may be obtained in the real time formalism in a simple way by using directly the 2Ă—22\times 2 matrices that different elements acquire in this formalism. Using this procedure we calculate the analytic (single component) thermal amplitude for the pion pole term in the ensemble average of two axial-vector currents to two loops in chiral perturbation theory. The general expressions obtained for the effective mass and decay constants of the pion are evaluated in the chiral and the nonrelativistic limits. We also investigate the effect of massive states on these effective parameters.Comment: 17 pages TeX and 9 eps figure

    Hopping motion of lattice gases through nonsymmetric potentials under strong bias conditions

    Full text link
    The hopping motion of lattice gases through potentials without mirror-reflection symmetry is investigated under various bias conditions. The model of 2 particles on a ring with 4 sites is solved explicitly; the resulting current in a sawtooth potential is discussed. The current of lattice gases in extended systems consisting of periodic repetitions of segments with sawtooth potentials is studied for different concentrations and values of the bias. Rectification effects are observed, similar to the single-particle case. A mean-field approximation for the current in the case of strong bias acting against the highest barriers in the system is made and compared with numerical simulations. The particle-vacancy symmetry of the model is discussed.Comment: 8 pages (incl. 6 eps figures); RevTeX 3.

    Schroedinger cat-like states by conditional measurements on a beam-splitter

    Full text link
    A scheme for generating Schr\"{o}dinger cat-like states of a single-mode optical field by means of conditional measurement is proposed. Feeding into a beam splitter a squeezed vacuum and counting the photons in one of the output channels, the conditional states in the other output channel exhibit a number of properties that are very similar to those of superpositions of two coherent states with opposite phases. We present analytical and numerical results for the photon-number and quadrature-component distributions of the conditional states and their Wigner and Husimi functions. Further, we discuss the effect of realistic photocounting on the states.Comment: 6 figures(divided in subfigures) using a4.st

    Skyrmion Excitations in Quantum Hall Systems

    Full text link
    Using finite size calculations on the surface of a sphere we study the topological (skyrmion) excitation in quantum Hall system with spin degree of freedom at filling factors around ν=1\nu=1. In the absence of Zeeman energy, we find, in systems with one quasi-particle or one quasi-hole, the lowest energy band consists of states with L=SL=S, where LL and SS are the total orbital and spin angular momentum. These different spin states are almost degenerate in the thermodynamic limit and their symmetry-breaking ground state is the state with one skyrmion of infinite size. In the presence of Zeeman energy, the skyrmion size is determined by the interplay of the Zeeman energy and electron-electron interaction and the skyrmion shrinks to a spin texture of finite size. We have calculated the energy gap of the system at infinite wave vector limit as a function of the Zeeman energy and find there are kinks in the energy gap associated with the shrinking of the size of the skyrmion. breaking ground state is the state with one skyrmion of infinite size. In the presence of Zeeman energy, the skyrmion size is determined by the interplay of the Zeeman energy and electron-electronComment: 4 pages, 5 postscript figures available upon reques

    A non-parametric structural hybrid modeling approach for electricity prices

    Get PDF
    We develop a stochastic model of zonal/regional electricity prices, designed to reflect information in fuel forward curves and aggregated capacity and load as well as zonal or regional price spreads. We use a nonparametric model of the supply stack that captures heat rates and fuel prices for all generators in the market operator territory, combined with an adjustment term to approximate congestion and other zone-specific behavior. The approach requires minimal calibration effort, is readily adaptable to changing market conditions and regulations, and retains sufficient tractability for the purpose of forward price calibration. The model is illustrated for the spot and forward electricity prices of the PS zone in the PJM market, and the set of time-dependent risk premiums are inferred and analyzed

    Signal and System Approximation from General Measurements

    Full text link
    In this paper we analyze the behavior of system approximation processes for stable linear time-invariant (LTI) systems and signals in the Paley-Wiener space PW_\pi^1. We consider approximation processes, where the input signal is not directly used to generate the system output, but instead a sequence of numbers is used that is generated from the input signal by measurement functionals. We consider classical sampling which corresponds to a pointwise evaluation of the signal, as well as several more general measurement functionals. We show that a stable system approximation is not possible for pointwise sampling, because there exist signals and systems such that the approximation process diverges. This remains true even with oversampling. However, if more general measurement functionals are considered, a stable approximation is possible if oversampling is used. Further, we show that without oversampling we have divergence for a large class of practically relevant measurement procedures.Comment: This paper will be published as part of the book "New Perspectives on Approximation and Sampling Theory - Festschrift in honor of Paul Butzer's 85th birthday" in the Applied and Numerical Harmonic Analysis Series, Birkhauser (Springer-Verlag). Parts of this work have been presented at the IEEE International Conference on Acoustics, Speech, and Signal Processing 2014 (ICASSP 2014
    • …
    corecore