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ABSTRACT

A model framework for parameterized subgrid-scale surface fluxes (PASS) has been modified and applied as
PASS1 to use satellite data, models, and limited surface observations to infer root-zone available moisture (RAM)
content with high spatial resolution over large terrestrial areas. Data collected during the 1997 Cooperative
Atmosphere–Surface Exchange Study field campaign at the Atmospheric Boundary Layer Experiments site in
the Walnut River watershed in Kansas were used to evaluate applications of the PASS1 approach to infer soil
moisture content at times of satellite overpasses during cloudless conditions. Data from Advanced Very High
Resolution Radiometers on the NOAA-14 satellite were collected and then adjusted for atmospheric effects by
using LOWTRAN7 and local atmospheric profile data from radiosondes. The input variables for PASS1 consisted
of normalized difference vegetation index and surface radiant temperature, together with representative obser-
vations of downwelling solar irradiance, air temperature, relative humidity, and wind speed. Surface parameters,
including roughness length, albedo, surface conductance for water vapor, and the ratio of soil heat flux to net
radiation, were estimated with parameterizations suitable for the area using satellite data and land-use information;
pixel-specific near-surface meteorological conditions such as air temperature, vapor pressure, and wind speed
were adjusted according to local surface forcing; and RAM content was estimated using surface energy balance
and aerodynamic methods. Comparisons with radar cumulative precipitation observations and in situ soil moisture
estimates indicated that the spatial and temporal variations of RAM at the times of satellite overpasses were
simulated reasonably well by PASS1.

1. Introduction

Soil moisture near the surface interacts strongly with
the atmosphere through evapotranspiration and precip-
itation. The availability of soil moisture for evapotrans-
piration controls the partitioning between surface sen-
sible and latent heat fluxes and is a major factor in
controlling surface temperature. Because the sensible
and latent heat fluxes strongly affect the structure of the
planetary boundary layer (PBL), simulations of PBL
behavior should take into account the spatial and tem-
poral variation in soil moisture content.

Field observations of soil moisture content typically
are too limited to provide the spatial resolution and cov-
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erage required to adequately describe the spatial het-
erogeneity of soil moisture over extended areas. Song
et al. (1997) modeled the influence of heterogeneous
soil moisture on latent and sensible heat fluxes and
found that simulated regional-scale latent heat fluxes
tend to be higher and air temperatures lower under uni-
form surface conditions than under spatially heteroge-
neous conditions. Pitman et al. (1993) demonstrated that
possible biases associated with the underrepresentation
of regional land surface heterogeneity within climate
models might explain the propensity of climate models
to overestimate grid-cell evapotranspiration and under-
estimate runoff. Hence, detailed information on the spa-
tial distribution of the surface conditions appears to be
necessary to simulate evapotranspiration accurately
over extended areas.

A logical source of information related to spatial–
temporal variation in land surface properties is remotely
sensed data (e.g., Choudhury 1991). Various studies
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have shown that surface temperature estimated from
space can be used to infer soil moisture (e.g., Ottlé and
Vidal-Madjar 1994; Feddes et al. 1993). Recent analyses
of surface soil moisture determined remotely from mul-
tispectral (thermal and vegetation index) measurements
showed a wide range of surface radiant temperatures
and vegetation fractions (Price 1990; Moran et al. 1994;
Diak et al. 1995; Carlson et al. 1995; Gillies and Carlson
1995; Gillies et al. 1997), an observation that translates
into a wide range of surface wetness. Gillies and Carlson
(1995) and Moran et al. (1994) used the recognizable
triangular shape of the pixel envelope in the scatterplot
of the normalized difference vegetation index (NDVI)
versus surface radiant temperature to estimate surface
soil moisture. However, these methods can fall short
because of uncertainties introduced by small-scale var-
iations in air temperature, wind speed, roughness, and
other surface and meteorological variables that influence
soil moisture estimates. For example, soil water content
derived with the triangle method versus that from soil
hydrology models can show poor agreement on a pixel-
by-pixel basis. The linear correlation between remotely
derived soil water content and values derived with a soil
hydrology model typically improve when averages are
made over larger areas (Perry and Carlson 1988; Gillies
et al. 1997).

Gillies et al. (1997) used an inversion procedure for
multispectral data collected from aircraft to estimate sur-
face moisture availability, fractional vegetation cover,
and instantaneous surface energy fluxes. The procedure
required the fitting of a measured variable to a simulated
one, such that their equivalence defined a solution (e.g.,
for soil water content or surface energy fluxes). In this
type of inversion, in which one or more parameters need
to be obtained from measured values, a solution is ob-
tained from model simulations rather than from a direct
evaluation of a simple integral or function.

In general, techniques relying only on surface tem-
peratures such as those inferred from infrared remote
sensing usually do not provide accurate estimates of the
profiles of moisture content in the soil. The surface soil
tends to be drier than the layers below, and the ability
of vegetation to extract moisture from various depths can
confound relationships between the temperature of veg-
etative canopies and soil moisture at any one depth (e.g.,
Capehart and Carlson 1997). Although remote detection
of soil moisture content in the upper 10 cm is possible
with the use of passive microwave sensing at frequencies
of about 1–18 GHz, factors like aboveground vegetative
canopy biomass, surface roughness, soil texture, and soil
organic matter content also affect the measured micro-
wave brightness temperatures or polarization signals
(e.g., Mattikalli et al. 1998; Vinnikov et al. 1999).

The parameterized subgrid-scale surface flux model
(PASS) overcomes some of these limitations (Gao 1995;
Gao et al. 1998). It couples Advanced Very High Res-
olution Radiometer (AVHRR) satellite data at individual
pixels with limited meteorological observations in the

study region to infer the root-zone available moisture
(RAM) content for each pixel. The original PASS model
has now been modified, refined, and separated into two
parts. PASS1 is limited to inferring conditions near the
times of satellite overpasses. PASS2 carries the simu-
lation forward in time. This paper describes the use of
PASS1 to infer RAM content at the Walnut River wa-
tershed (WRW) in southeastern Kansas.

2. Description of the PASS1 Model

The model grid (MG) size of many weather and cli-
mate models is about 100 km or larger, while satellite
pixels and land use parcels with dimensions on the order
of 0.01–1 km are on the subgrid (SG) scale. Routine
surface meteorological observations are rarely made at
locations consistently less than 100 km apart in large
regions and thus are most suitable for MG applications.
The PASS1 model uses existing surface observations
and connects MG to SG processes with a simplified
treatment of the surface energy balance of a plant–soil
system. This approach uses (i) algorithms employing
high-resolution satellite remote sensing data to derive
the essential parameters for individual types of surfaces
over large areas, (ii) methods to describe the interactions
of near-surface atmospheric conditions with surface pro-
cesses, and (iii) algorithms to compute RAM content at
scales of satellite pixels or finer land use units. Figure
1 provides an outline of the approach. Values of SG
surface parameters, including roughness length, surface
albedo, surface conductance for water vapor, and the
ratio of soil heat flux to net radiation, are estimated by
using functional relationships between the surface pa-
rameters and satellite-derived spectral indices according
to land-use classes. These relationships contain empir-
ical coefficients whose values in this study had been
derived for midlatitude areas with surface vegetation
dominated by grasslands and agricultural crops and
might not be suitable for areas with different surface
characteristics. Pixel-specific near-surface meteorolog-
ical conditions such as air temperature, vapor pressure,
and wind speed are adjusted according to local surface
forcing to account for the feedback of the locally influ-
enced meteorological conditions on the local atmo-
sphere–surface exchange. Values of RAM content at the
SG level are then estimated by using surface energy
budget and aerodynamic methods. The details of PASS1
can be considered in six steps (Fig. 1), which are ac-
complished without iteration except for a second pass
starting at step 3, which involves the spatial distribution
of ambient water vapor pressure.

a. Step 1, model inputs

The PASS1 model requires the provision of both MG
and SG information. At the MG scale, observations are
needed on incident solar radiation K↓, surface layer air
temperature Ta, relative humidity RH, and wind speed
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FIG. 1. Scheme of PASS1 model.

u at the time of the satellite overpass. The quantities
Ta, RH, and u are routinely measured as part of national
and state networks of surface meteorological stations,
and K↓ is often measured by special programs or state
networks. In addition, K↓ could be calculated via re-
trievals of satellite data, for example, from Visible and
Infrared Spin Scan Radiometers on Geostationary Op-
erational Environmental Satellites (Gautier and Lands-
feld 1997). At the SG scale, pixel-scale satellite infor-
mation consisting of NDVIi or the simple ratio SR i and
surface temperature under cloudless skies is needediTs

for each pixel i. Reflectances in the red waveband
(AVHRR channel 1) and the near-infrared waveband
(AVHRR channel 2) can be used to evaluate NDVI (ch2
2 ch1)/(ch2 1 ch1) and SR (ch2/ch1), and thermal
radiances detected in AVHRR channels 4 and 5 can be
converted to radiant temperature. Land-use data and
root-zone available water capacity (uA) values are also
necessary. In this study, the AVHRR data had a reso-
lution of about 1 km. Calculations were made for 200-m
pixels, conforming to the resolution of the datasets used
on land use and root-zone available water capacity.

Surface temperature is a key variable in PASS1 cal-
culations. The assumption is that the values of derivediTs

from the satellite observations are good estimates of
both the aerodynamic surface temperature and a tem-
perature highly indicative of the evapotranspirative sta-
tus of the vegetation as affected by soil moisture con-
ditions in the root zone. This assumption is not always
valid, especially for vegetative canopies that are not
uniform or have locally variable coverage of the ground
(e.g., woodlands in the WRW). In addition, the thermal
radiance detected at the satellite can sometimes change
systematically with view angle for agricultural row
crops that do not entirely cover the ground. This type
of crop coverage existed mostly at some of the winter
wheat fields at the WRW for the period of time ad-

dressed in the present study. The effects of varying sat-
ellite view angles are ignored in this work. Finally, in
the current PASS1, a surface emissivity of 0.98 is as-
sumed for all surfaces. This value is typical of vege-
tation within a standard deviation of about 0.01 (Ottlé
and Stoll 1993), which corresponds to an error of less
than 1.5 K in surface temperature.

b. Step 2, precalculation

The surface parameters of canopy and surface resis-
tance, aerodynamic resistance, surface albedo, and ratio
of soil heat flux to net radiation are related to the spectral
vegetation indices for each land use category. The veg-
etation indices are derived from satellite-based remote
sensing of surface reflectances. Effectively quantifying
these surface parameters at the satellite pixel scale is an
important step in subgrid-scale surface parameteriza-
tion. Use of satellite data, combined with appropriate
surface interpretation algorithms and land-use data, pro-
vides descriptions of seasonal and annual changes in the
amount and biophysical status of terrestrial vegetation
at fine resolution.

1) ALBEDO

Albedo a varies with surface conditions and solar
zenith angle. For vegetated land, a is found by using
the parameterization described by Gao et al. (1998),
based on calculations with a canopy reflectance model
(Gao 1995):

a K2ia 5 a 1 a exp 2 2 . (1)0 1 2i1 2SR cosZ

Here Z is the solar zenith angle, and a0, a1, a2, and K are
empirical coefficients (Table 1). For urban areas, a typical
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TABLE 1. Surface albedo corresponding to the land use.

Land use Albedo a0 a1 a2 K

Urban
Cropland
Rangeland
Woodland
Water

0.15

20.0139 1 0.0467 tan Z
1 $ a $ 0.03

0.10
0.25
0.10

0.14
20.14

0.14

6.08
6.08
6.08

0.25
0.25
0.25

TABLE 2. Roughness length corresponding to land use.

Land-use category
Roughness length

(m)

Urban
Cropland
Rangeland
Woodland
Water

0.7
1023.0212.22NDVI

1023.0212.27NDVI

1
0.0001

value of ai 5 0.15 is assumed (e.g., Landsberg 1981; Oke
1987). For water, ai is a function of solar zenith angle, as
shown in Table 1 (e.g., Atwater and Ball 1981).

2) RATIO OF SOIL HEAT FLUX TO NET RADIATION

The ratio of soil heat flux to net radiation Gi for veg-
etated surfaces is found as a function of SRi and Z, as
described by Gao et al. (1998):

m K1iG 5 exp 2 . (2)
i m 1 22(SR ) cosZ

Here the empirical coefficients m1, m2, and K are 0.539,
0.4, and 0.25, respectively; and Z is restricted to values
smaller than 888. The influence of soil moisture on the
ground heat flux is ignored in this version of PASS1.
For urban areas, Gi is assumed to be equal to 0.3, a
relatively large value to account for the heat storage of
buildings. A value of 0.3 is used here for open water,
a rough approximation that has little impact because
open water exists in the WRW in only very limited areas
of rivers and reservoirs.

3) SURFACE ROUGHNESS

Estimates of surface roughness length ( ) on pixel-iz0

sized scales are based on land-use data and NDVI, which
considers both permanent land cover and seasonal
changes. Typical values of z0 for urban, woodland, and
water surfaces have been given by Stull (1988) and
various other sources in the scientific literature. We as-
sume a value of z0 5 0.7 m for the fairly open urban
areas found in Great Plains cities, a value slightly small-
er than that found in some urban areas (Grimmond et
al. 1998). Woodland areas consist mainly of groves and
trees along streams, and a value of z0 5 1 m is chosen.
Values of z0 for fairly uniform surfaces typical of ag-
ricultural fields in the WRW croplands and woodlands
vary from 0.07 to 0.13h, where h is canopy height (e.g.,
Garratt 1992). Here we select z0 5 0.1h and find h with
formulations based on field observations made above
wheat and grass in northern Illinois (J. Song 1998, un-
published manuscript). Table 2 summarizes the rough-
ness length values and calculations for the five dominant
land-use categories in the WRW.

For each SG pixel, is the roughness length. Theiz0

average roughness value z 0 for the entire MG region is
computed as

2121n i1 z0z 5 (z 2 d) exp ln . (3)O0 r 5 1 2 6[ ]n z 2 di51 r

Here where zr represents the reference height, about 10
m above the aerodynamic displacement height d, which
for vegetation is roughly two-thirds of the canopy
height. This formulation is one of several that could be
used (e.g., André and Blondin 1986; Vihma and Savi-
järvi 1991) and was chosen in part because of its com-
patibility with the distribution function described later
for wind speed.

4) SURFACE CONDUCTANCE

The procedure described by Gao (1995) is used to
find the total surface conductance for water vapor.igc

The conductance is found as the product of the con-
ductance for unstressed vegetation and the extractioniGc

function f 2, which accounts for the constraint by RAM
and is explained in step 6. Evaluation of incorporatesiGc

the conductance G0 for nonvegetated surfaces or se-
nescent canopies and vegetative factors associated with
photosynthetically active radiation (PAR, estimated as
0.5K↓), SRi, and the atmospheric water vapor deficit
dei. In precalculations, the atmospheric water vapor def-
icit for each pixel is set to be the mean from the surface
meteorological observations in the MG region. The soil
water content is initially unknown, so for saturatediGc

soil conditions is first calculated instead of :igc

b PAR1i i iG 5 G 1 (SR 2 SR ) f (de ). (4)c 0 0 1(b 1 PAR)2

Here the factor f 1 5 (1 1 b3de)21 describes the influ-
ence on the surface conductance by the atmospheric
water vapor deficit de (Kim and Verma 1991). The em-
pirical coefficients used in the above expressions are b1

5 0.285 3 1022 m s21, b2 5 156 W m22, and b3 5
0.093 kPa21. Here SR0 is the simple ratio for nonve-
getated surfaces or those with senescent vegetation. If
SRi is less than SR0, then is set equal to G0. ForiGc

urban areas, the surface conductance G0 is small; it is
assumed to be zero in PASS1.

c. Step 3, subgrid-scale distribution

The regional meteorological variables for wind speed,
air temperature, and water vapor pressure are spatially
distributed to individual pixels according to the surface
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conditions and strength of the local vertical transfer. In
PASS1, the distribution functions that relate wind speed
u to ui, air temperature Ta to , and atmospheric vaporiTa

pressure ea to areiea

1/2
z 2 d z 2 dr riu 5 u ln ln , (5)

i1 2@ 1 2[ ]z z0 0

i iT 5 T 1 a (T 2 T ), (6)a a T s s

i ie 5 e 1 a (e 2 e ). (7)a a e sf sf

Here the overbars denote an average over the MG re-
gion. The distribution function for wind is based on the
approximation that uu* at a reference height of about
10 m above the aerodynamic displacement height is
invariant for a given set of atmospheric conditions (e.g.,
Walcek et al. 1986). Equation (5) is theoretically con-
sistent with computing u by means of a logarithmic
profile equation using z 0 from Eq. (3) and a regional
friction velocity found from the arithmetic mean of the
momentum fluxes across the area. Because the friction
velocities are not routinely measured at surface mete-
orological stations, u is found here from the arithmetic
mean of wind speeds observed at the sites in the region
and an adjustment with an expression similar to Eq. (5)
to account for the domain-average surface roughness
versus the average surface roughness at the observa-
tional sites. The numerical coefficients aT and ae rep-
resent the strength of surface forcing, which is affected
by turbulent mixing processes within the atmospheric
boundary. In the current PASS1, both aT and ae are set
at 0.57, according to a previous study for similar terrain
and vegetation (Gao 1995). The surface temperature

is obtained from satellite thermal channels. The vaporiTs

pressure esf of the air effectively in contact with the
canopy or land bulk surface is estimated from the fol-
lowing relationship:

5 ( ) 2 EiRy / .i i i i ie e T T gsf sat s a c (8)

Here esat(Ts) is the surface saturation vapor pressure, Ei

is the turbulent moisture flux, and Ry is water vapor gas
constant. Tests conducted with PASS1 have shown that
an alternative method of recalculating the vapor pressure
distribution, based on root-zone moisture content in-
stead of surface vapor pressure in Eq. (7) (Gao 1995;
Seth et al. 1994), produces almost the same results as
does Eq. (7). PASS1 uses surface vapor pressure in Eq.
(7) because it describes physical processes similar to
those indicated by Eq. (6); thus, the coefficients ae and
aT are more likely to have the same value, as is assumed
in PASS1.

Because Ei and are both unknown quantities ini-igc

tially, a temporary substitute for Eq. (7) is needed for
a single iteration through steps 3–6. Tests have shown
that additional iterations are not necessary. The surface
conductances from step 2 are used for this substitution,
in the following equation:

iG 2 Gc cie 5 e 1 1 a . (9)a a e1 2[ ]Gc

d. Step 4, postcalculation

The conductance for vegetation that is not stressediGc

by lack of moisture (which occurs when the soil is sat-
urated or nearly saturated with water) is recalculated in
step 4 using Eq. (4) with pixel-specific estimates of dei

based on the SG values of and estimated from thei iT ea a

distribution functions. Friction velocity and aero-iu*
dynamic resistance are found with SG values of uiiRa

estimated from the distribution function and roughness
length at individual pixels, asiz0

21
z 2 dri iu* 5 0.4u ln , (10)

i1 2[ ]z0

1 z 2 drTiR 5 ln . (11)a i i1 20.4u* z0h

Here roughness length z0h is related to z0 by the ex-
pression ln(z0/z0h) . 2, which is appropriate for uniform
surfaces but might not be adequate for incomplete veg-
etative canopies. The term zrT denotes the reference
heights at which temperature and humidity are observed,
typically 1.5–2.0 m above the aerodynamic displace-
ment height. Estimates of and made with Eqs.i iu Ra*
(10) and (11) could be modified to incorporate the ef-
fects of nonneutral conditions by using stability func-
tions based on bulk Richardson numbers computed with
the values of ui, , and (e.g., as outlined by Zhangi iT Ta s

et al. 1995). As is noted in the discussion for step 5,
however, use of stability corrections tends to produce
inferior results with the present PASS1 configuration.

e. Step 5, surface energy balance

The surface radiation budget for each pixel is

5 (1 2 a i)K↓ 1 Li↓ 2 Li↑,iRn (12)

where Li↓ and Li↑ represent the incoming and outgoing
longwave irradiances, respectively. The latter quantity
is estimated from the Stefan–Boltzmann law and surface
temperature . The downward irradiance is parameter-iTs

ized as a function of air temperature and vapor pressure
according to Satterlund (1979):

Li↓ 5 1.08 [1 2 exp(2 )].
i4 T /2016ai isT ea a (13)

Here s is the Stefan–Boltzmann constant, is vaporiea

pressure in millibars, and is atmospheric temperatureiTa

in Kelvin.
The sensible heat flux Hi for each pixel is estimated

from the temperature difference between air and surface
by using the aerodynamic expression

ir cpi i iH 5 (T 2 T ). (14)s aiRa
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TABLE 3. Soil moisture properties for several soil textures, derived
from Buckman and Brady (1960) and, in parentheses, from Rutter
(1975).

uf uw uA

Sandy loam
Loam
Silt loam
Clay loam
Clay

(0.27)
0.21 (0.34)
0.28 (0.38)
0.29 (0.30)
0.30 (0.39)

(0.11)
0.10 (0.13)
0.12 (0.14)
0.13 (0.16)
0.16 (0.22)

(0.16)
0.11 (0.21)
0.16 (0.24)
0.15 (0.14)
0.14 (0.17)

Here ri is the air density and cp is the specific heat of
air at constant pressure. The latent heat flux lEi is then
calculated as the residual term in the surface energy
balance:

lEi 5 (1 2 Gi) 2 Hi.iRn (15)

This method of estimating the latent heat flux as a
residual quantity of the surface energy balance is nec-
essary because the surface resistance is not yet estimated
at this step of the calculations. One disadvantage of this
method is that poor estimates of can result in sig-iRa

nificant errors in lEi. For example, tests conducted with
PASS1 with its use of Eq. (5) as a distribution function
for wind speed have indicated that using stability ad-
justments for and in step 4 sometimes results ini iu Ra*
unreliable estimates of for daytime conditions, whichiRa

can cause excessively large values of Hi and small val-
ues of lEi. Thus, stability adjustments have not been
applied for the simulations described in this paper,
which conforms with Gao’s (1995) practice of not using
them in earlier versions of the PASS model. Another
example is that the present version of PASS1 tends to
produce unusually small values of for the largeiRa

roughness length of woodlands, increasing Hi and de-
creasing lEi excessively. This tendency results from the
limitations in the distribution functions for isolated or
relatively rare surfaces whose properties differ greatly
from the average. To consider such surfaces, which in-
clude reservoirs, rivers, and woodlands in the WRW,
observations of wind speed over these specific types of
surfaces ideally would be used, but such measurements
were not made for this study. In addition, surface ra-
diometric temperature might consistently overestimate
surface temperature for the incomplete canopies that
dominate woodlands in the WRW, in which case un-
derestimates of would lead to unusually large valuesiRa

of Hi. Woodlands occur mostly along rivers in the WRW
and cover a very small portion of the domain, so the
present version of PASS1 sets the value of for theiRa

woodland land-use class equal to an average value for
the domain.

f. Step 6, root-zone available moisture

The RAM content (ua) is found as a function of the
soil moisture extraction function f 2, which is calculated
in PASS1 as the ratio / (Fig. 1). The surface con-i ig Gc c

ductance is calculated as 5 1/ , where is foundi i ig R Rc c c

via the following aerodynamic relationship:

ir Cpi i i ilE 5 [e (T ) 2 e ]. (16)sat s ai ig(R 1 R )a c

Here g is the psychrometric constant.
Using ua is a slight deviation from the approach used

in previous versions of PASS that rely on relative avail-
able soil moisture content (Gao 1995; Gao et al. 1998).
The RAM content ua is defined as the difference between

the absolute moisture content u and the wilting point
moisture content uw; all three quantities are the volu-
metric fraction expressed in centimeter per centimeter
of soil or m3 m23 of soil. The amount of moisture rep-
resented by ua is the portion of the available soil mois-
ture capacity uA that exists at a particular time. Because
uA is the difference between field capacity moisture con-
tent uf and uw, ua determines the amount of soil moisture
that influences evapotranspiration rate. Previous studies
have typically used either a linear or a nonlinear de-
pendence of f 2 on soil moisture content.

Betts et al. (1997) conducted sensitivity tests using
both linear and nonlinear relationships in numerical
models and found that linear relationships tended to
produce more realistic variations in soil moisture con-
tent with time in some situations. The independent var-
iable can be defined as Q 5 ua/uA and the linear rela-
tionship as (e.g., Mahfouf and Noilhan 1991)

f 2 5 Q. (17)

An advantage to this approach is that uA can be used
directly without knowledge of uf or uw; databases on uA

for the United States are available from the U.S. De-
partment of Agriculture (SSURGO 1995).

Many types of nonlinear formulations have been de-
veloped to describe the relationships between terms
equivalent to f 2 and measures of soil moisture (e.g., see
Brutsaert 1982; Abramopoulos et al. 1988). The non-
linear relationships sometimes include fairly precise de-
scriptions of the relationships between moisture content
and water potential in the soil (e.g., Fuentes et al. 1992).
The nonlinear function examined here requires estimates
of uf and uw. Although the concepts of field capacity
and wilting point are essential for many practical ap-
plications, the corresponding values reported vary con-
siderably. Table 3 summarizes some representative val-
ues for these quantities. The values without parentheses
are derived from Buckman and Brady (1960) as sum-
marized by Oke (1987), and the values in parentheses
are derived from information summarized by Rutter
(1975). The degree of compaction and amount of soil
organic matter probably accounts for some of the var-
iability.

We assume that the wilting point corresponds to a
soil suction value of Cw 5 15 bar and the saturation
corresponds to a soil suction of 0.2 bar. These assump-
tions allow a simple solution of the function C 5 a(ua)b,
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FIG. 2. Extraction function f 2 depicted as a linear and a nonlinear
function of relative available soil moisture.

FIG. 3. Observation sites in the Walnut River Watershed (WRW).
The type of surface vegetation at each of the eight NCAR sites is
noted in Table 5.

described by Hillel (1998) and based on the work of
Gardner et al. (1970). The values of a and b can be
calculated for the assumed soil moisture properties. The
function f 2 can be related to the soil suction (e.g., Abra-
mopoulos et al. 1988) as f 2 5 (Cw 2 C)/Cw. The
available soil moisture content ua can be found as ua 5
uw[(1 2 f 2)21/b 2 1].

Figure 2 shows f 2 versus relative available soil mois-
ture Q plotted for both the linear and nonlinear for-
mulations. The nonlinear function allows less variation
of evapotranspiration when the values of ua are fairly
large and produces a steeper decrease of the availability
of moisture for evapotranspiration as the soil dries. The
sensitivity of this approach to wilting point estimates
makes them susceptible during drydown to the effects
of inaccuracies in estimates of soil moisture content and
soil hydrological properties. Also, a disadvantage of the
nonlinear relationship is that it requires knowledge of
wilting point values, which are highly variable and not
available in databases for large regions. In contrast, the
linear function allows evapotranspiration to have a more
even sensitivity to available moisture and requires only
data on uA, which are readily available at fairly high
spatial resolution (SSURGO 1995).

3. Application

Measurements of a wide range of surface and PBL
conditions were made during April and May 1997 at
the WRW by the Cooperative Atmosphere–Surface Ex-
change Study (CASES) consortium and the Atmospher-
ic Boundary Layer Experiments (ABLE) facility oper-
ated by Argonne National Laboratory (LeMone et al.
2000). The WRW covers an area of approximately 5000
km2 east of Wichita, Kansas. It is located in the Ar-
kansas–Red River basin and is enclosed by the southern
Great Plains Clouds and Radiation Testbed of the U.S.
Department of Energy’s Atmospheric Radiation Mea-

surement (ARM) program. Figure 3 shows the spatial
distribution of the observation sites in the WRW. The
1997 CASES campaign and routine ABLE operations
provided surface-based observations of the vertical pro-
files of temperature, relative humidity, and wind, as well
as the air–surface exchange rates of heat, moisture, and
momentum. One of the objectives of CASES-97 was to
document the effects of surface wetness on PBL struc-
ture. As variations in precipitation, surface vegetation,
and thus soil moisture content occurred spatially and
temporally in the WRW, it served as a testbed to assess
the ability of PASS1 to couple satellite data with me-
teorological observation to characterize the variation of
RAM content with high spatial resolution over large
terrestrial areas.
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TABLE 4. NOAA-14 satellite overpass information and spatially
averaged surface meteorological conditions.

DOY
Time

(GMT)
Visibility

(km)
K ↓

(W m22)
T a

(C)
RH
(%)

ū
(m s21)

119
130
140

20:07
19:47
19:38

90
120
110

886
945
953

26.0
20.7
20.6

32.5
29.2
42.7

9.6
5.2
5.0

a. Satellite data

In this study, the PASS1 analysis focused on three
cloudless days in 1997: 29 April, 10 May, and 20 May
[days of year (DOY) 119, 130, and 140]. The WRW
had distinctive surface wetness patterns on each day
because of the varying nature of previous precipitation
events and the changing vegetation conditions as the
‘‘greening’’ of the surface progressed. The AVHRR sat-
ellite data noted in Table 4 were chosen in part because
the overpass times of the satellite over the region oc-
curred near midday. The satellite view angle varied from
48 to 44.58 on the three days, which has been taken into
account in computing atmospheric corrections. With
these views at the small solar zenith angles at the time
of the satellite overpasses, the effects of bidirectional
reflection on NDVI and SR observations could be as-
sumed to be negligible. The AVHRR data were obtained
by direct reception of the National Oceanic and At-
mospheric Administration (NOAA) NOAA-14 satellite
high-resolution picture transmission (HRPT). The
HRPT data used here cover an area within latitudes of
37.158–38.178N and longitudes of 96.478–97.338W. The
size of each satellite pixel is approximately 1 km. The
reflectances in the red waveband (channel 1, 0.58–0.68
mm) and near-infrared waveband (channel 2, 0.73–1.10
mm) were used to estimate NDVI and SR, and the ra-
diances for channels 4 (10.5–11.5 mm) and 5 (11.5–12.5
mm) in the thermal infrared range were converted to
radiant temperature by the standard procedure docu-
mented in the NOAA satellite user’s manual (Kidwell
1998).

To derive ground-level spectral reflectances and sur-
face temperature from the satellite-derived at-sensor val-
ues, calculations of atmospheric scattering, absorption,
transmission, and emission in the layer from the satellite
altitude to the altitude of the site were made with the
commonly used atmospheric radiation transfer model
LOWTRAN7, with radiosonde data obtained near the
town of Oxford, Kansas, and values of visibility inferred
from total extinction coefficient measurements with a
nephelometer at the ARM central facility in north-cen-
tral Oklahoma. The differences in reflectances between
satellite-level values and corresponding ground-level
values were estimated with the algorithm suggested by
Fraser et al. (1992), which allowed the reflectances to
be adjusted for atmospheric effects. The ground-level
radiant temperature was obtained by adjusting the raw
values with calculated atmospheric transmittance and

radiance in the thermal region associated with AVHRR
channels 4 and 5. Surface temperatures (Ts) were de-
rived from the radiant temperatures with the assumption
that the surface emissivity was equal to 0.98.

With reliable radiosonde data and local estimates of
visibility, LOWTRAN7 appeared to make adequate at-
mospheric corrections for some of the days. A general
limitation with this approach is that local visibility data
of high quality are not always readily available. All
visibility values greater than 10 miles (16.2 km) are
reported as 10 miles by National Weather Service sta-
tions. On DOY 124 and 136, the readings at the ARM
site, which is located about 100 km from the WRW, did
not appear to be representative of the WRW, possibly
because haze was not uniform over the region. Thus the
satellite data from these two days were not used in this
study. In general, the spatial variability of haze and other
atmospheric conditions, including subvisual incipient
clouds, tend to lessen the reliability of the adjustments.

The split-window method (Price 1984) might be an
alternative to using LOWTRAN7 to adjust for the ef-
fects of the atmosphere on the derived values of surface
temperature. The split-window technique has the ad-
vantage of not requiring independently derived esti-
mates of atmospheric scattering and absorption, but its
accuracy for land surfaces can be questioned (e.g., Gao
et al. 1998). For DOY 119 and 130, the surface tem-
peratures derived from the split-window technique were
cooler by about 7.18 and 3.48C, respectively, than those
found with LOWTRAN7 for pixels for which the sur-
face was entirely exposed water, primarily for Eldorado
Lake in the northeast portion of the WRW. On DOY
140, surface temperatures derived from the split-win-
dow technique were about 2.18C warmer than those
found using LOWTRAN7 for the pixels representing
Eldorado Lake. An adjustment as large as 7.18C to the
LOWTRAN7-derived surface temperatures for DOY
119 would have resulted in unrealistically large esti-
mates of RAM. Use of a fraction of these differences
to adjust the values of surface temperature derived using
LOWTRAN7 might be feasible and was attempted in
the present study. However, a justification for choosing
a particular value for the fraction or other means of
making adjustments using the split-window technique
was not found. Thus, data from the split-window tech-
nique were not used in this study. Derivation of im-
proved methods to evaluate the surface temperature re-
mains the subject of future research.

The spatial and temporal patterns of NDVI and sur-
face radiant temperature varied on the three different
days. Values of NDVI were relatively small in the east-
ern grassland area on DOY 119 and 130. Larger values
occurring over the whole WRW area on DOY 140 reflect
the gradual springtime greening of the vegetation. The
surface temperatures on DOY 119 and 130 were higher
than on DOY 140, except for a few spots in the south-
west on DOY 119 and patches of lower temperature in
the northwest and southwest on DOY 130.
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TABLE 5. Vegetative conditions at the eight NCAR sites.

Site 1: Grassland (minimal grazing)
Site 2: Grassland (minimal grazing)
Site 3: Bare ground planted to maize and soybeans
Site 4: Sparse grass (bare ground to south)
Site 5: Winter wheat
Site 6: Winter wheat on floodplain
Site 7: Winter wheat on south-facing slope
Site 8: Grassland (ungrazed)

FIG. 4. Map (left) of land-use classes in the WRW (classes 1–5: urban land uses; 6: cropland; 7: rangeland; 8: woodland; 9: water ; and
10: others); and map (right) of available water capacity in the top layer of soils in the WRW.

b. Meteorological observations

During CASES-97, ABLE and the National Center
for Atmospheric Research (NCAR) operated equipment
at the WRW locations sketched in Fig. 3. Standard sur-
face meteorological observations were made with au-
tomatic weather stations located at two ABLE remote
sensing sites and the surface flux site near the town of
Smileyberg. NCAR operated six Portable Automated
Mesonet (PAM) stations and two Atmosphere-Surface
Turbulent Exchange Research (ASTER) systems in the
southern portion of the WRW to measure surface energy

fluxes, near-surface soil moisture content and temper-
ature, surface meteorological parameters, and related
quantities. The estimates of K↓, Ta, RH, and u needed
as PASS1 input parameters were made from the arith-
metic means of observations at the eight NCAR sites
(Table 4). The vegetative conditions at each site are
described in Table 5. Vertical profiles of temperature
and humidity were obtained from radiosondes operated
by NCAR near Oxford.

c. Land-use and surface hydrological data

Land-use classes for the WRW and the immediately
surrounding area are displayed in Fig. 4 with a hori-
zontal resolution of 200 m. The classes were derived
from a dataset based on an unsupervised classification
of Landsat Thematic Mapper data performed by the
Kansas Applied Remote Sensing Program (DASC
1993). The original data files contained information with
a resolution of 30 m, but a resolution of 200 m was
considered adequate to isolate individual types of sur-
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FIG. 5. Variation of measured precipitation at Wichita, KS, and domain-averaged estimates of
RAM content (ua) and NDVI, in 1997.

faces in relation to the 1-km resolution of the NDVI
data. As has already been described, the land-use data
were applied to calculate roughness lengths, albedos,
surface conductances, and ratio of ground heat flux to
net radiation.

Data on available water capacity uA with 200-m res-
olution (Fig. 4) were extracted from datasets based on
county soil survey manuals (SSURGO 1995). Esti-
mates of neither uf nor uw are made during most county
soil surveys; thus, the values are not readily available,
hindering the application of nonlinear f 2 functions. For
tests conducted with PASS1 to compare results of non-
linear versus linear versions of f 2 , we assumed that
uw was two-thirds of uA . This assumption is based on
the typical values shown in Table 3 and the fact that
the textural classes of soils in the WRW are mostly
silt loam in the hills in the east and the central lowlands
and silty clay loam on the western uplands (Penner et
al. 1975).

4. Results and evaluation

a. Trends in precipitation, NDVI, and RAM content

Estimates of ua were made by using both the linear
and nonlinear f 2 expressions for each 200-m resolution
pixel at the times of the three chosen satellite over-
passes. Figure 5 shows the values of whole-domain
arithmetic mean of ua using the linear expression for
f 2, as well as values of NDVI, in relation to precipitation
amounts independently measured previously at a Na-
tional Weather Service station in Wichita, Kansas. The
domain, defined by the latitudes and longitudes given
in section 3a, was roughly a rectangle that encompassed
the WRW. The entire area was greening up during the
experimental period, as is indicated by the trend in

NDVI. The values of ua were clearly responding to the
amounts of rainfall in the area. The averaged estimates
of ua were 0.152, 0.186, and 0.195 for the linear function
and 0.103, 0.167, and 0.195 for the nonlinear function
on DOY 119, 130, and 140, respectively. The nonlinear
f 2 thus produced significantly lower values of ua during
dry (DOY 119) and moderately moist (DOY 130) soil
conditions.

b. Comparison with spatial precipitation patterns

Figure 6 shows the spatial patterns in ua, derived from
the linear f 2 function, along with event rainfall amounts
independently derived from an S-band polarized radar
system operated by NCAR at a location west of the
WRW; the estimates of rainfall amounts were adjusted
with data from a network of over 30 rain gauges op-
erated by Oregon State University and other networks
in the area (Brandes et al. 1999; LeMone et al. 2000).
The horizontal patterns in ua changed with time in a
manner evidently dependent on the antecedent precip-
itation fields. Scattered areas in the WRW received light
precipitation on the 3–4 days prior to DOY 119 (for
which a radar image was not available), as indicated by
scattered areas of high RAM content in the southern
WRW and the relatively dry soil conditions in the north-
ern parts. With the rainfall received on DOY 122 and
127–128, the soil moisture on DOY 130 can be seen in
Fig. 6 to have become fairly evenly distributed, except
for dry conditions in the far southern portion of the
WRW and slightly drier conditions near the center of
the WRW in areas lying between the bands of rain dur-
ing the event on DOY 127–128. On DOY 140, the var-
iation of RAM content appears in Fig. 6 to largely mirror
the distribution of uA, after the heavy rainfall that oc-
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FIG. 6. Patterns of modeled RAM content and cumulative precipitation measured on selected days by radar during rain events.

curred on DOY 138 and 139. The spatial patterns (not
shown) of ua derived from the nonlinear f 2 function
were similar to the pattern for the linear relationship for
DOY 140, but the former had excessively sharp spatial
variations for DOY 119 and 130; the sharpness was
induced by the nonlinear function when the soil is un-
saturated.

c. Comparison with in situ soil moisture
measurements

In situ soil moisture measurements were made at the
eight NCAR sites in the southern WRW (Fig. 3) by
using reflectometer probes placed across a depth of 1–9
cm in the soil, so that the readings were representative
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FIG. 7. Model results on RAM content (ua) for (a) linear f 2 and (b) nonlinear f 2 vs soil moisture (u)
measured at a depth of about 5 cm at the eight NCAR sites during CASES-97. The error bars indicate one
standard deviation on each side of the model means for the pixels within about 1 km of the measurement
sites.

of a depth of about 5 cm. Minor adjustments in the
thermal response of the probes were applied to the soil
moisture values provided by NCAR, to produce more
realistic diurnal variations in the moisture content. In
general, comparison of the local in situ measurements
to the model estimates for individual pixels is difficult,
in part because soil moisture content can vary signifi-
cantly along fairly short horizontal distances. The cur-
rent study used 200-m resolution pixels for land use and
1-km resolution data for NDVI and surface temperature;
estimates of the latter two quantities were probably fre-
quently affected by a mixture of contrasting surface con-
ditions within one pixel, for example, bare soil and veg-
etation in adjacent fields. Furthermore, the geographic
registration of the 1-km resolution satellite data was
considered accurate only to within about one pixel. In
an attempt to make some comparison, nevertheless, es-
timates of ua were averaged over all of the 200-m pixels
within 1 km of each NCAR site. Figure 7 shows the
means and standard deviations of the ua estimates for
the 121 pixels that were centered as closely as possible
on each measurement location. Data points on the
straight lines would indicate perfect agreement only if
the value of wilting point moisture content uw were ex-
actly 0.15; values ranging at least from 0.13 to 0.17 are
likely for the soils and vegetation at the sites. As ex-
pected, the variability of the data derived by using the
nonlinear relationship (Fig. 7b) is usually larger than
that of data from the linear relationship (Fig. 7a), es-
pecially for low levels of modeled RAM content.

The modeled RAM contents found with the linear
relationship are slightly larger than the observations,
which is more realistic than the most frequent case of
underestimates obtained with the nonlinear relationship.
The soil moisture in the root zone or deep soil layers
is usually depleted more slowly than in the upper layer

where the measurements were made. For example, a
few, infrequent samples of soil moisture profiles indi-
cated that the range of soil moisture content measured
in the upper 10 cm of the soil in the wheat field of site
7 varied from 0.18 to 0.30 (for the dry conditions of
DOY 118 and the wet conditions on DOY 141, respec-
tively), from 0.27 to 0.30 at a depth of 25 cm, and from
0.44 to 0.46 at a depth of 50 cm. By comparison, the
variations at the site 8 grassland were smaller: 0.24–
0.35 in the upper 10 cm, 0.40–0.46 at 25 cm, and 0.46–
0.48 at 50 cm.

The values of near-surface soil moisture content ob-
served for the winter wheat fields at sites 5, 6, and 7
were consistently lower than for the grasslands or bare
soil that existed at the other sites, except after heavy
rainfall preceding DOY 140. Unusually small moisture
contents were measured at site 5 on DOY 130 and site
6 on DOY 130. Also, the measurements of soil moisture
profiles indicated that the moisture content increased
rapidly with depth in the wheat field when the surface
was dry. The difference in the moisture content across
the upper 10 cm of the soil in the wheat field at site 7
was at least 0.10 in all but very moist conditions, while
the gradient across the upper soil layer in the grassland
site was usually less than 0.05. The typical small-scale
horizontal variations that naturally occur in soil mois-
ture, together with the strong vertical gradients and tem-
poral variability of the soil moisture content seen in the
upper 10 cm in the wheat field, suggests that the single
probes used at sites 5 and 6 could have been placed in
unrepresentative locations near the surface. When the
data from site 5 on DOY 130 and site 6 on DOY 119
are included in a linear regression analysis, the resulting
R value is 0.34 for the linear f 2 function and 0.42 for
the nonlinear function. The R values increase to 0.65
and 0.75 for the linear and nonlinear functions, respec-
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tively, when the two points are excluded. With these
two points excluded, the arithmetic mean of the ratio
of ua 1 0.15 to the observed values is 1.06 (with a
standard deviation of 0.15) for the linear form of f 2 and
0.97 (with a standard deviation of 0.11) for the nonlinear
form of f 2.

5. Conclusions

A new version of the parameterized subgrid-scale sur-
face fluxes model (PASS1) was developed specifically
for times of satellite overpasses to evaluate surface en-
ergy fluxes and the root-zone moisture content at sat-
ellite pixel scales over extended areas. As in previous
versions of PASS, model inputs consist of standard sur-
face meteorological observations, solar insolation data,
and estimates of NDVI and thermal infrared temperature
derived from satellite observations. Modeled values of
RAM content (ua) plus a representative value of wilting
point moisture content for the WRW agreed on average
with observed soil moisture content during CASES-97
to within 6% for the mean, with a standard deviation
of about 15%. Also, the pattern in ua matched rain
gauge–corrected radar observations of previous rainfall
events, and ua values computed for individual sites were
similar to in situ data on soil moisture content measured
in the upper soil layer at eight locations. These com-
parisons were limited to fairly moist conditions and to
areas typical of the Great Plains.

PASS1 uses more physically realistic distribution
functions for wind speed and ambient water vapor con-
tent than were used previously by PASS. For the am-
bient water vapor content, the distribution function us-
ing surface vapor pressure produces effectively the same
results as a function using estimated RAM content. Fu-
ture work might lead to a better distribution function
for wind speed, for example, by considering atmospher-
ic stability and roughness more explicitly. For wood-
lands, the current version of PASS1 produced poor es-
timates of aerodynamic resistance Ra unless the rough-
ness length was reduced to unrealistically small values.

PASS1 incorporates a linear relationship between
RAM content and the extraction factor that relates
evapotranspiration rate without moisture stress to the
rate with moisture stress. The linear function might be
less satisfactory than a nonlinear relationship for indi-
vidual sites with extensive soil characterization, but the
linear relationship in PASS1 appears to produce more
realistic spatial variations in soil moisture content. Fur-
thermore, the linear relationship can be used with da-
tabases derived from soil surveys that estimate available
water capacity.

This research is intended to lead to an operational
version of PASS for use in evaluating evapotranspiration
for hydrological studies. PASS1 is applied only for the
time of satellite overpasses and is intended to provide
initial data for using PASS2 for the time intervals be-
tween the overpasses. In addition, PASS1 has the po-

tential of providing initialization and assimilation data
on soil moisture content for weather forecast and pos-
sibly climate models, which is a desirable feature be-
cause dense networks of soil moisture measurement sta-
tions are generally not available as a data source.

The use of LOWTRAN7 to make atmospheric ad-
justments to infer the surface reflectances and infrared
radiances from satellite data is a technique that could,
in principle, be automated for routine applications. At
least daily radiosonde data would be needed as well as
measurements of optical depths or visibility in the area.
The visibility data would have to be of higher quality,
especially for large values of visibility, than those typ-
ically acquired at conventional surface meteorological
stations. In addition, the horizontal variability of water
vapor and aerosols in the atmosphere can lessen the
accuracy of the atmospheric adjustments for a particular
subgrid area in the modeling domain. Use of the split-
window technique for open water in reservoirs and lake
provides an alternative approach for various locations
in the domain, although the split-window approach ap-
plied to bodies of open water in terrestrial surroundings
was found to be unreliable in this study. Improved an-
alytical or observational methods of inferring the sur-
face optical radiances of large areas are needed, espe-
cially for infrared surface temperature.
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