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1 Introduction 

Short wavelength FELs impose stringent requirements on the quality of the 
electron beams. The key factor in obtaining a single-pass UV or x-ray FEL is 
the generation of small emittance electron beams with ultra-high brightness. 
The pioneering work at Los Alamos National Laboratory in the last decade 
has resulted in a dramatic improvement in the production of high electron 
beam brightness and small beam emittance using rf photocathode gun. The 
lower bound on the emittance of a l-nC bunch without any emittance com- 
pensation is on the order of 3 7r mm-mad. This is well within the emittance 
requirement being considered here. Although the original R&D work at Ar- 
gonne [l], in collaboration with the University of Illinois at Chicago and Uni- 
versity of Wisconsin-Madison, has produced encouraging results in the area 
of rf structure design, x-ray mask fabrication, and LIGA processing (Lithog- 
raphy, Electroforming, and Molding), the goal to prove feasibility has not yet 
been achieved. In this paper, we will present feasibility studies for a compact 
single-pass mm-linac FEL based on LIGA technology. This system will con- 
sist of a photocathode rf gun operated at 30 GHz, a 50-MeV superconducting 
constant gradient structure operated at 60 GHz, and a microundulator with 
l-mm period. 

2 FEL parameters 

The mm-wave linac-based FEL under feasibility study will consist of a 3$-cell 
photocathode rf gun operated at 30 GHz, a 5-meter-long superconducting con- 
stant gradient structure operated at 60 GHz, and a 2-meter-long microundu- 
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lator with 1-mm period. The FEL main design parameters are summarized in 
Table 1. 

3 Photocathode rf gun 

The rf gun considered for design studies here is a 30-GHz 3i-cell side coupled 
structure. The gun is designed to operate in the n-mode phasing on the beam 
axis. A 30-GHz structure will allow us to reach a very high peak electric 
field in excess of 500 MV/m at the cathode. The gun is designed to produce 
electron beams with energies up to 6 MeV. The rf power is fed from a single 
waveguide which couples power directly to cells 2 and 3. MAFIA [2] numerical 
codes including particle-in-cell simulations were used to model the 30-GHz rf 
gun. The initial simulation results indicate that the beam rms emittance is 
between 3 and 7 7r mm-mrad depending on the initial rf phase. The chosen 
photocathode material is copper with a cathode quantum efficiency of 0.01%. 
A 15-GHz 3i-cell model was fabricated for cold model rf measurements. The 
results are reported in [3]. 

4 Accelerating structure 

To relax the rf power requirement, we are are considering a 6O-GHz super- 
conducting constant gradient structure fabricated by the LIGA process. For a 
planar constant gradient structure, the cell-to-cell coupling must be controlled. 
Since the LIGA process requires that the the structure to be fabricated as a 
single piece on a wafer, the cell-to-cell coupling adjustment can be done by 
varying the cell width and length with a constant depth within the structure. 
A ?f traveling wave is chosen as the accelerating mode. The 5-meter structure 
is composed of fifty standard 10-cm-long sections. For a 60-GHz structure a 
1-mm aperture height can be used for the required coupling to obtain a con- 
stant gradient with b = 4.4 mm, g = 1.266 mm, and t = 0.4 mm, see Figure 
1. For a 60-cell section the shunt impedance is 200 $ and the required group 
velocity normalized to the speed of light is in the range of 0.096 to 0.02’2 [4]. 

5 Microundulator 

An undulator of period 1 mm has been designed. The undulator consists of 
a silver conductor embedded in poles and a substrate of nickel-iron. The un- 
dulator will be fabricated by the LIGA process to improve the fabrication 
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accuracy. Silver is chosen as a conductor for its high electrical conductivity 
and its softness. Nickel-iron is chosen for its high permeability and suitabie 
mechanical properties. X shortened (2-period) version of the undulator was 
modeled using the eddp-current numerical code I3LEKTR.A [5]. The silver and 
nickel-iron were treated as different vector-potential regions. The surrounding 
“air” was treated as a combination of vector-potential and magnetic scalar- 
potential regions as needed for consistency with the current specifications. 
Simulation results indicate that within the midplane, the field is fairly uni- 
form transversely across the central regiim and, with the slotted poles, most 
of the current remains in the silver. A ten-times (10-mm period) model was 
designed using 1010 steel for the substrate and insulated copper wire for the 
conductor. Stainless steel spacers held the top and bottom halves in the cor- 
rect relative positions. The model was driven with a current of 10 A from a 
DC power supply. This gave a peak field of 25.5 G, in agreement with the 26.6 
G predicted by a 2-D computation. The full undulator design and the initial 
measurements are reported in [6]. 
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Table 1 
Basic 300-nm Linac FEL Design Parameters. 

X F E L  
FEL parameter, p 

Lmt 

Lgain 

Beam energy 

Peak beam current 

Beam pulse length 

Normalized rms emittance 

Micropulse charge 

300 nm 

7 x 10-4 

4.3 m 
20 cm 

50 MeV 

600 A 

3 PS 

3 ‘lr mm-mrad 

1.8 nC 

1 Magnetic field, B 1 0.7 T 

I Deflection parameter, K I 0.196 

I Lund 5 m  
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Figure 1 - A constant gradient planar cavity structure with cuts in irises 


