86 research outputs found

    The origins of postmating reproductive isolation: testing hypotheses in the grasshopper Chorthippus parallelus

    Get PDF
    Although there are several well-established hypotheses for the origins of postmating isolation during allopatric divergence, there have been very few attempts, to determine their relative importance in nature. We have developed an approach based on knowledge of the differing evolutionary histories of populations within species that allows systematic comparison of the predictions of these hypotheses. In previous work, we have applied this methodology to mating signal variation and premating reproductive isolation between populations of the meadow grasshopper Chorthippus parallelus. Here we review the principles behind our approach and report a study measuring postmating isolation in the same set of populations. The populations have known and differing evolutionary histories and relationships resulting from the colonization of northern Europe following the last glaciation. We use a maximum-likelihood analysis to compare the observed pattern of postmating isolation with the predictions of the hypotheses that isolation primarily evolves either as a result of gradual accumulation of mutations in allopatry, or through processes associated with colonization, such as founder events., We also quantify the extent to which degree of postmating isolation can be predicted by genetic distance. Our results suggest that although there is only a weak correlation between genetic distance and postmating isolation, long periods of allopatry do lead to postmating isolation. In contrast to the pattern of premating isolation described in our previous study, colonization does not seem to be associated with increased postmating isolation

    Coupling, Reinforcement, and Speciation

    Get PDF
    During the process of speciation, populations may diverge for traits and at their underlying loci that contribute barriers to gene flow. These barrier traits and barrier loci underlie individual barrier effects, by which we mean the contribution that a barrier locus or trait-or some combination of barrier loci or traits-makes to overall isolation. The evolution of strong reproductive isolation typically requires the origin of multiple barrier effects. Critically, it also requires the coincidence of barrier effects; for example, two barrier effects, one due to assortative mating and the other due to hybrid inviability, create a stronger overall barrier to gene flow if they coincide than if they distinguish independent pairs of populations. Here, we define "coupling" as any process that generates coincidence of barrier effects, resulting in a stronger overall barrier to gene flow. We argue that speciation research, both empirical and theoretical, needs to consider both the origin of barrier effects and the ways in which they are coupled. Coincidence of barrier effects can occur either as a by-product of selection on individual barrier effects or of population processes, or as an adaptive response to indirect selection. Adaptive coupling may be accompanied by further evolution that enhances individual barrier effects. Reinforcement, classically viewed as the evolution of prezygotic barriers to gene flow in response to costs of hybridization, is an example of this type of process. However, we argue for an extended view of reinforcement that includes coupling processes involving enhancement of any type of additional barrier effect as a result of an existing barrier. This view of coupling and reinforcement may help to guide development of both theoretical and empirical research on the process of speciation

    Signals of demographic expansion in Drosophila virilis

    Get PDF
    BACKGROUND: The pattern of genetic variation within and among populations of a species is strongly affected by its phylogeographic history. Analyses based on putatively neutral markers provide data from which past events, such as population expansions and colonizations, can be inferred. Drosophila virilis is a cosmopolitan species belonging to the virilis group, where divergence times between different phylads go back to the early Miocene. We analysed mitochondrial DNA sequence variation among 35 Drosophila virilis strains covering the species' range in order to detect demographic events that could be used to understand the present characteristics of the species, as well as its differences from other members of the group. RESULTS: Drosophila virilis showed very low nucleotide diversity with haplotypes distributed in a star-like network, consistent with a recent world-wide exponential expansion possibly associated either with domestication or post-glacial colonization. All analyses point towards a rapid population expansion. Coalescence models support this interpretation. The central haplotype in the network, which could be interpreted as ancestral, is widely distributed and gives no information about the geographical origin of the population expansion. The species showed no geographic structure in the distribution of mitochondrial haplotypes, in contrast to results of a recent microsatellite-based analysis. CONCLUSION: The lack of geographic structure and the star-like topology depicted by the D. virilis haplotypes indicate a pattern of global demographic expansion, probably related to human movements, although this interpretation cannot be distinguished from a selective sweep in the mitochondrial DNA until nuclear sequence data become available. The particular behavioural traits of this species, including weak species-discrimination and intraspecific mate choice exercised by the females, can be understood from this perspective

    Targeted re-sequencing reveals geographic patterns of differentiation for loci implicated in parallel evolution

    Get PDF
    Parallel divergence and speciation provide evidence for the role of divergent selection in generating biological diversity. Recent studies indicate that parallel phenotypic divergence may not have the same genetic basis in different geographical locations - "outlier loci" (loci potentially affected by divergent selection) are often not shared among parallel instances of phenotypic divergence. However, limited sharing may be due, in part, to technical issues if false positive outliers occur. Here, we test this idea in the marine snail Littorina saxatilis, which has evolved two partly isolated ecotypes (adapted to crab predation vs. wave action) in multiple locations independently. We argue that if the low extent of sharing observed in earlier studies in this system is due to sampling effects, we expect outliers not to show elevated FST when sequenced in new samples from the original locations, and also not to follow predictable geographical patterns of elevated FST . Following a hierarchical sampling design (within vs. between country), we applied capture sequencing, targeting outliers from earlier studies and control loci. We found that outliers again showed elevated levels of FST in their original location, suggesting they were not generated by sampling effects. Outliers were also likely to show increased FST in geographically close locations, which may be explained by higher levels of gene flow or shared ancestral genetic variation compared to more distant locations. However, in contrast to earlier findings, we also found some outlier types to show elevated FST in geographically distant locations. We discuss possible explanations for this unexpected result. This article is protected by copyright. All rights reserved

    Multidimensional divergent selection, local adaptation, and speciation

    Get PDF
    Divergent selection applied to one or more traits drives local adaptation and may lead to ecological speciation. Divergent selection on many traits might be termed “multidimensional” divergent selection. There is a commonly held view that multidimensional divergent selection is likely to promote local adaptation and speciation to a greater extent than unidimensional divergent selection. We disentangle the core concepts underlying dimensionality as a property of the environment, phenotypes, and genome. In particular, we identify a need to separate the overall strength of selection and the number of loci affected from dimensionality per se, and to distinguish divergence dimensionality from dimensionality of stabilizing selection. We then critically scrutinize this commonly held view that multidimensional selection promotes speciation, re-examining the evidence base from theory, experiments, and nature. We conclude that the evidence base is currently weak and generally suffers from confounding of possible causal effects. Finally, we propose several mechanisms by which multidimensional divergent selection and related processes might influence divergence, both as a driver and as a barrier

    Local adaptation and reproductive isolation: when does speciation start?

    Get PDF
    The speciation process often takes a long time. The speciation continuum framework has been useful to reconstruct the evolutionary processes that result in the formation of new species but defining when this continuum starts is far from trivial. Although a panmictic population is often considered the initial condition of speciation, this is unrealistic for almost all species. Local or divergent adaptation are viewed by many researchers as processes that shape intraspecific diversity and thus are not part of speciation. We propose that speciation starts when reproductive isolation becomes greater than zero, arguing in favour of the alternative view that local adaptation necessarily involves some reproductive isolation, independently of whether it results in the completion of speciation. Given that local adaptation is widespread, the consequence is that most species are constantly in the process of speciating. The process of speciation is best represented as the formation of separate subnetworks, defined by reproductive isolation, within extended and fluid spatial networks of populations

    A universal mechanism generating clusters of differentiated loci during divergence-with-migration

    Get PDF
    Genome-wide patterns of genetic divergence reveal mechanisms of adaptation under gene flow. Empirical data show that divergence is mostly concentrated in narrow genomic regions. This pattern may arise because differentiated loci protect nearby mutations from gene flow, but recent theory suggests this mechanism is insufficient to explain the emergence of concentrated differentiation during biologically realistic timescales. Critically, earlier theory neglects an inevitable consequence of genetic drift: stochastic loss of local genomic divergence. Here we demonstrate that the rate of stochastic loss of weak local differentiation increases with recombination distance to a strongly diverged locus and, above a critical recombination distance, local loss is faster than local 'gain' of new differentiation. Under high migration and weak selection this critical recombination distance is much smaller than the total recombination distance of the genomic region under selection. Consequently, divergence between populations increases by net gain of new differentiation within the critical recombination distance, resulting in tightly-linked clusters of divergence. The mechanism responsible is the balance between stochastic loss and gain of weak local differentiation, a mechanism acting universally throughout the genome. Our results will help to explain empirical observations and lead to novel predictions regarding changes in genomic architectures during adaptive divergence. This article is protected by copyright. All rights reserved

    A Linkage Map and QTL Analysis for Pyrethroid Resistance in the Bed Bug Cimex lectularius.

    Get PDF
    The rapid evolution of insecticide resistance remains one of the biggest challenges in the control of medically and economically important pests. Insects have evolved a diverse range of mechanisms to reduce the efficacy of the commonly used classes of insecticides and finding the genetic basis of resistance is a major aid to management. In a previously unstudied population, we performed an F2 resistance mapping cross for the common bed bug, Cimex lectularius, for which insecticide resistance is increasingly widespread. Using 334 SNP markers obtained through RAD-sequencing, we constructed the first linkage map for the species, consisting of 14 putative linkage groups (LG), with a length of 407 cM and an average marker spacing of 1.3 cM. The linkage map was used to reassemble the recently published reference genome, facilitating refinement and validation of the current genome assembly. We detected a major QTL on LG12 associated with insecticide resistance, occurring in close proximity (1.2 Mb) to a carboxylesterase encoding candidate gene for pyrethroid resistance. This provides another example of this candidate gene playing a major role in determining survival in a bed bug population following pesticide resistance evolution. The recent availability of the bed bug genome, complete with a full list of potential candidate genes related to insecticide resistance, in addition to the linkage map generated here, provides an excellent resource for future research on the development and spread of insecticide resistance in this resurging pest species

    Is embryo abortion a post‐zygotic barrier to gene flow between Littorina ecotypes?

    Get PDF
    Genetic incompatibilities contribute to reproductive isolation between many diverging populations, but it is still unclear to what extent they play a role if divergence happens with gene flow. In contact zones between the "Crab" and "Wave" ecotypes of the snail Littorina saxatilis, divergent selection forms strong barriers to gene flow, while the role of post‐zygotic barriers due to selection against hybrids remains unclear. High embryo abortion rates in this species could indicate the presence of such barriers. Post‐zygotic barriers might include genetic incompatibilities (e.g. Dobzhansky–Muller incompatibilities) but also maladaptation, both expected to be most pronounced in contact zones. In addition, embryo abortion might reflect physiological stress on females and embryos independent of any genetic stress. We examined all embryos of >500 females sampled outside and inside contact zones of three populations in Sweden. Females' clutch size ranged from 0 to 1,011 embryos (mean 130 ± 123), and abortion rates varied between 0% and 100% (mean 12%). We described female genotypes by using a hybrid index based on hundreds of SNPs differentiated between ecotypes with which we characterized female genotypes. We also calculated female SNP heterozygosity and inversion karyotype. Clutch size did not vary with female hybrid index, and abortion rates were only weakly related to hybrid index in two sites but not at all in a third site. No additional variation in abortion rate was explained by female SNP heterozygosity, but increased female inversion heterozygosity added slightly to increased abortion. Our results show only weak and probably biologically insignificant post‐zygotic barriers contributing to ecotype divergence, and the high and variable abortion rates were marginally, if at all, explained by hybrid index of females
    • 

    corecore