47 research outputs found

    Uniaxial Phase Transition in Si : Ab initio Calculations

    Full text link
    Based on a previously proposed thermodynamic analysis, we study the relative stabilities of five Si phases under uniaxial compression using ab initio methods. The five phases are diamond, beta-tin, sh, sc, and hcp structures. The possible phase-transition patterns were investigated by considering the phase transitions between any two chosen phases of the five phases. By analyzing the different conributions to the relative pahse stability, we identified the most important factors in reducing the phase-transition pressures at uniaxial compression. We also show that it is possible to have phase transitions occur only when the phases are under uniaxial compression, in spite of no phase transition when under hydrostatic commpression. Taking all five phases into consideration, the phase diagram at uniaxial compression was constructed for pressures under 20 GPa. The stable phases were found to be diamond, beta-tin and sh structures, i.e. the same as those when under hydrostatic condition. According to the phase diagram, direct phase transition from the diamond to the sh phase is possible if the applied uniaxial pressures, on increasing, satisfy the condition of Px>Pz. Simiilarly, the sh-to-beta-tin transition on increeasing pressures is also possible if the applied uniaxial pressures are varied from the condition of Px>Pz, on which the phase of sh is stable, to that of Px<Pz, on which the beta-tin is stable

    The effects of interface morphology on Schottky barrier heights: a case study on Al/GaAs(001)

    Full text link
    The problem of Fermi-level pinning at semiconductor-metal contacts is readdressed starting from first-principles calculations for Al/GaAs. We give quantitative evidence that the Schottky barrier height is very little affected by any structural distortions on the metal side---including elongations of the metal-semiconductor bond (i.e. interface strain)---whereas it strongly depends on the interface structure on the semiconductor side. A rationale for these findings is given in terms of the interface dipole generated by the ionic effective charges.Comment: 5 pages, latex file, 2 postscript figures automatically include

    Relaxation and reconstruction on (111) surfaces of Au, Pt, and Cu

    Get PDF
    We have theoretically studied the stability and reconstruction of (111) surfaces of Au, Pt, and Cu. We have calculated the surface energy, surface stress, interatomic force constants, and other relevant quantities by ab initio electronic structure calculations using the density functional theory (DFT), in a slab geometry with periodic boundary conditions. We have estimated the stability towards a quasi-one-dimensional reconstruction by using the calculated quantities as parameters in a one-dimensional Frenkel-Kontorova model. On all surfaces we have found an intrinsic tensile stress. This stress is large enough on Au and Pt surfaces to lead to a reconstruction in which a denser surface layer is formed, in agreement with experiment. The experimentally observed differences between the dense reconstruction pattern on Au(111) and a sparse structure of stripes on Pt(111) are attributed to the details of the interaction potential between the first layer of atoms and the substrate.Comment: 8 pages, 3 figures, submitted to Physical Review

    Ab initio study of the beta$-tin->Imma->sh phase transitions in silicon and germanium

    Full text link
    We have investigated the structural sequence of the high-pressure phases of silicon and germanium. We have focussed on the cd->beta-tin->Imma->sh phase transitions. We have used the plane-wave pseudopotential approach to the density-functional theory implemented within the Vienna ab-initio simulation package (VASP). We have determined the equilibrium properties of each structure and the values of the critical parameters including a hysteresis effect at the phase transitions. The order of the phase transitions has been obtained alternatively from the pressure dependence of the enthalpy and of the internal structure parameters. The commonly used tangent construction is shown to be very unreliable. Our calculations identify a first-order phase transition from the cd to the beta-tin and from the Imma to the sh phase, and they indicate the possibility of a second-order phase-transition from the beta-tin to the Imma phase. Finally, we have derived the enthalpy barriers between the phases.Comment: 12 pages, 16 figure

    Schottky barrier heights at polar metal/semiconductor interfaces

    Full text link
    Using a first-principle pseudopotential approach, we have investigated the Schottky barrier heights of abrupt Al/Ge, Al/GaAs, Al/AlAs, and Al/ZnSe (100) junctions, and their dependence on the semiconductor chemical composition and surface termination. A model based on linear-response theory is developed, which provides a simple, yet accurate description of the barrier-height variations with the chemical composition of the semiconductor. The larger barrier values found for the anion- than for the cation-terminated surfaces are explained in terms of the screened charge of the polar semiconductor surface and its image charge at the metal surface. Atomic scale computations show how the classical image charge concept, valid for charges placed at large distances from the metal, extends to distances shorter than the decay length of the metal-induced-gap states.Comment: REVTeX 4, 11 pages, 6 EPS figure

    15-keto-prostaglandin E2 activates host peroxisome proliferator-activated receptor gamma (PPAR-Îł) to promote Cryptococcus neoformans growth during infection

    Get PDF
    Cryptococcus neoformans is one of the leading causes of invasive fungal infection in humans worldwide. C. neoformans uses macrophages as a proliferative niche to increase infective burden and avoid immune surveillance. However, the specific mechanisms by which C. neoformans manipulates host immunity to promote its growth during infection remain ill-defined. Here we demonstrate that eicosanoid lipid mediators manipulated and/or produced by C. neoformans play a key role in regulating pathogenesis. C. neoformans is known to secrete several eicosanoids that are highly similar to those found in vertebrate hosts. Using eicosanoid deficient cryptococcal mutants Δplb1 and Δlac1, we demonstrate that prostaglandin E2 is required by C. neoformans for proliferation within macrophages and in vivo during infection. Genetic and pharmacological disruption of host PGE2 synthesis is not required for promotion of cryptococcal growth by eicosanoid production. We find that PGE2 must be dehydrogenated into 15-keto-PGE2 to promote fungal growth, a finding that implicated the host nuclear receptor PPAR-γ. C. neoformans infection of macrophages activates host PPAR-γ and its inhibition is sufficient to abrogate the effect of 15-keto-PGE2 in promoting fungal growth during infection. Thus, we describe the first mechanism of reliance on pathogen-derived eicosanoids in fungal pathogenesis and the specific role of 15-keto-PGE2 and host PPAR-γ in cryptococcosis

    Effect of surrounding environment on atomic structure and equilibrium shape of growing nanocrystals: gold in/on SiO2

    Get PDF
    We report on the equilibrium shape and atomic structure of thermally-processed Au nanocrystals (NCs) as determined by high resolution transmission electron microscopy (TEM). The NCs were either deposited on SiO2surface or embedded in SiO2layer. Quantitative data on the NCs surface free energy were obtained via the inverse Wulff construction. Nanocrystals inside the SiO2layer are defect-free and maintain a symmetrical equilibrium shape during the growth. Nanocrystals on SiO2surface exhibit asymmetrical equilibrium shape that is characterized by the introduction of twins and more complex atomic defects above a critical size. The observed differences in the equilibrium shape and atomic structure evolution of growing NCs in and on SiO2is explained in terms of evolution in isotropic/anisotropic environment making the surface free energy function angular and/or radial symmetric/asymmetric affecting the rotational/translational invariance of the surface stress tensor

    The metal-insulator transition in quasiparticle theory and Kohn-Sham theory

    No full text
    We investigate the pressure-induced metal-insulator transition of silicon in the diamond structure. Quasiparticle theory (QPT) calculations are performed within the GW approximation, and Kohn-Sham theory (KST) results are obtained by using an exchange-correlation potential derived from the GW self-energy operator, not using the common local-density approximation (LDA). In both KST and the LDA, metallization occurs at a much larger volume than in QPT. These results suggest that the metallization point and Fermi surface of the Kohn-Sham electrons are not necessarily those of the real system

    Band structures for excited state spectroscopies

    No full text
    By calculating an exchange-correlation potential from the self-energy operator, we show that interpretation of the one-electron band structure appearing in density-functional theory (DFT) calculations as quasiparticle energies is seriously invalid. For example, the well-known error in the minimum band gap of semiconductors and insulators is not caused by the use of the local density approximation (LDA), but is inherent to DFT. Furthermore, the metal-insulator transition undergone when a semiconductor is compressed is not described correctly within DFT, showing that the DFT Fermi surface is not necessarily that of the real system. However, excited state properties can be calculated correctly, by using computational many-body theory. The GW approximation for the self-energy operator gives quasiparticle energies in excellent agreement with experiment. It may also be used to obtain the one-particle Green's function, from which other properties of the system may be found
    corecore