22 research outputs found

    Multiple benefits of manure: the key to maintenance of soil fertility and restoration of depleted sandy soils on African smallholder farms

    Get PDF
    Manure is a key nutrient resource on smallholder farms in the tropics, especially on poorly buffered sandy soils, due to its multiple benefits for soil fertility. Farmers preferentially apply manure to fields closest to homesteads (homefields), which are more fertile than fields further away (outfields). A three-year experiment was established on homefields and outfields on sandy and clayey soils to assess the effects of mineral nitrogen (N) fertilizer application in combination with manure or mineral phosphorus (P) on maize yields and soil chemical properties. Significant maize responses to application of N and manure were observed on all fields except the depleted sandy outfield. Large amounts of manure (17 t ha¿1 year¿1) were required to significantly increase soil organic carbon (SOC), pH, available P, and base saturation, and restore productivity of the depleted sandy outfield. Sole N as ammonium nitrate (100 kg N ha¿1) or in combination with single superphosphate led to acidification of the sandy soils, with a decrease of up to 0.8 pH units after three seasons. In a greenhouse experiment, N and calcium (Ca) were identified as deficient in the sandy homefield, while N, P, Ca, and zinc (Zn) were deficient or low on the sandy outfield. The deficiencies of Ca and Zn were alleviated by the addition of manure. This study highlights the essential role of manure in sustaining and replenishing soil fertility on smallholder farms through its multiple effects, although it should be used in combination with N mineral fertilizers due to its low capacity to supply N

    Human Capacity Development for Income Generation and Organic Market Linkages in Uganda

    Get PDF
    Rapid economic growth in Uganda has resulted from the strong emphasis on the market liberalization policies tied to export promotion. Commercialization of smallholder farmers’ products has been at the heart of the country’s development program since the year 2000. This study describes how the organic farming sector links farmers to markets through community empowerment, resource development and market linkage intervention strategies using a qualitative analysis of the institutional support provided by the organic sector. The private sector assures technical commodity related support, organic export linkage, and higher incomes while the civil service society emphasizes facilitation to a wide range of market linkages and builds capacities along aspects of the market chain. They both contribute to the empowerment of the communities to make decisions on various aspects of their farm lives. Further studies to assess the impact of the respective farmer market interventions on the livelihoods of the rural population are required

    Effect of farmer management strategies on spatial variability of soil fertility and crop nutrient uptake in contrasting agro-ecological zones in Zimbabwe

    Get PDF
    Variability of soil fertility within, and across farms, poses a major challenge for increasing crop productivity in smallholder systems of sub-Saharan Africa. This study assessed the effect of farmers’ resource endowment and nutrient management strategies on variability in soil fertility and plant nutrient uptake between different fields in Gokwe South (ave. rainfall ~650 mm year-1; 16.3 persons km-2) and Murewa (ave. rainfall ~850 mm year-1; 44.1 persons km-2) districts, Zimbabwe. In Murewa, resource-endowed farmers applied manure (>3.5 t ha-1 year-1) on fields closest to their homesteads (homefields) and none to fields further away (outfields). In Gokwe the manure was not targeted to any particular field, and farmers quickly abandoned outfields and opened up new fields further way from the homestead once fertility had declined, but homefields were continually cultivated. Soil available P was higher in homefields (8–13 mg kg-1) of resource-endowed farmers than on outfields and all fields on resource constrained farms (2–6 mg kg-1) in Murewa. Soil fertility decreased with increasing distance from the homestead in Murewa while the reverse trend occurred in Gokwe South, indicating the impact of different soil fertility management strategies on spatial soil fertility gradients. In both districts, maize showed deficiency of N and P, implying that these were the most limiting nutrients. It was concluded that besides farmers’ access to resources, the direction of soil fertility gradients also depends on agro-ecological conditions which influence resource management strategie

    Drivers of land use change and household determinants of sustainability in smallholder farming systems of Eastern Uganda

    Get PDF
    Smallholder farming systems in sub-Saharan Africa have undergone changes in land use, productivity and sustainability. Understanding of the drivers that have led to changes in land use in these systems and factors that influence the systems’ sustainability is useful to guide appropriate targeting of intervention strategies for improvement. We studied low input Teso farming systems in eastern Uganda from 1960 to 2001 in a place-based analysis combined with a comparative analysis of similar low input systems in southern Mali. This study showed that policy-institutional factors next to population growth have driven land use changes in the Teso systems, and that nutrient balances of farm households are useful indicators to identify their sustainability. During the period of analysis, the fraction of land under cultivation increased from 46 to 78%, and communal grazing lands nearly completely disappeared. Cropping diversified over time; cassava overtook cotton and millet in importance, and rice emerged as an alternative cash crop. Impacts of political instability, such as the collapse of cotton marketing and land management institutions, of communal labour arrangements and aggravation of cattle rustling were linked to the changes. Crop productivity in the farming systems is poor and nutrient balances differed between farm types. Balances of N, P and K were all positive for larger farms (LF) that had more cattle and derived a larger proportion of their income from off-farm activities, whereas on the medium farms (MF), small farms with cattle (SF1) and without cattle (SF2) balances were mostly negative. Sustainability of the farming system is driven by livestock, crop production, labour and access to off-farm income. Building private public partnerships around market-oriented crops can be an entry point for encouraging investment in use of external nutrient inputs to boost productivity in such African farming systems. However, intervention strategies should recognise the diversity and heterogeneity between farms to ensure efficient use of these external inputs

    Impacts of heterogeneity in soil fertility on legume-finger millet productivity, farmers ' targeting and economic benefits

    Get PDF
    Targeting of integrated management practices for smallholder agriculture in sub-Saharan Africa is necessary due to the great heterogeneity in soil fertility. Experiments were conducted to evaluate the impacts of landscape position and field type on the biomass yield, N accumulation and N2-fixation by six legumes (cowpea, green gram, groundnut, mucuna, pigeonpea and soyabean) established with and without P during the short rain season of 2005. Residual effects of the legumes on the productivity of finger millet were assessed for two subsequent seasons in 2006 in two villages in Pallisa district, eastern Uganda. Legume biomass and N accumulation differed significantly (P <0.001) between villages, landscape position, field type and P application rate. Mucuna accumulated the most biomass (4.8–10.9 Mg ha-1) and groundnut the least (1.0–3.4 Mg ha-1) on both good and poor fields in the upper and middle landscape positions. N accumulation and amounts of N2-fixed by the legumes followed a similar trend as biomass, and was increased significantly by application of P. Grain yields of finger millet were significantly (P <0.001) higher in the first season after incorporation of legume biomass than in the second season after incorporation. Finger millet also produced significantly more grain in good fields (0.62–2.15 Mg ha-1) compared with poor fields (0.29–1.49 Mg ha-1) across the two villages. Participatory evaluation of options showed that farmers preferred growing groundnut and were not interested in growing pigeonpea and mucuna. They preferentially targeted grain legumes to good fields except for mucuna and pigeonpea which they said they would grow only in poor fields. Benefit-cost ratios indicated that legume-millet rotations without P application were only profitable on good fields in both villages. We suggest that green gram, cowpea and soyabean without P can be targeted to good fields on both upper and middle landscape positions in both villages. All legumes grown with P fertiliser on poor fields provided larger benefits than continuous cropping of millet

    Market Integration Shape Organic Farmers’ Organisation

    Get PDF
    Increasing consumption of organic products in globalised food chains will require the involvement of thousands more smallholder farmers in many regions of the world. A study of Egypt, China and Uganda identified the three key factors of property rights regimes, cultural differences and social organisation as determents of the supply chain organization and farmers’ degree of direct integration in the export markets. Patterns are emerging where smallholder farmers are being socially and economically linked to larger farmers who may do some processing before the raw materials are handed over to the contracting company. Where transactions costs are high, local communities may develop and contract out the land directly to exporting companies who farm using employees. Four organisational patterns are identified which each leads to different types of livelihood benefits for the producers; preliminary results indicate that income and a reliable market access is the dominant benefits

    Efficacy of nutrient management options for finger millet production on degraded smallholder farms in eastern Uganda

    Get PDF
    Open Access Journal; Published online: 30 Sep 2021Poor soil fertility is a major problem constraining crop productivity in smallholder farms of sub-Saharan Africa due to inadequate nutrient replenishment. Differential management of nutrients creates areas of accumulation and depletion of nutrients within farms with the latter increasing in spatial coverage. Nutrient additions are required to increase crop production in such degraded areas. We used experimental data to evaluate the potential of inorganic fertilizers and organic manures to offset finger millet yield differences or gap between degraded fields and former kraals, which are recognized as niches for obtaining the best yields within the Teso farming system in eastern Uganda. Nitrogen (N) and phosphorus (P) fertilizers were sole applied at 0, 30, 60, and 90 kg ha−1 and in combination (N+P) at equal rates of sole application, and manure (3 t ha−1) supplemented with N (0, 30, 60, and 90 kg ha−1) to degraded fields located in upper and middle landscape positions in Chelekura and Onamudian villages. A second control treatment of finger millet grown on soils of former kraal sites (high fertility niches) was included as a benchmark to evaluate the efficacy of nutrient management options on degraded field. Average grain yield ranged from 404 to 2,026 kg ha−1 and differed significantly (p < 0.001) between villages and seasons. Significant effects (p < 0.05) of landscape position on grain yield were observed only in Onamudian village. Although the treatments significantly increased millet yields on degraded fields above the control, they could not eliminate the yield differences between degraded fields and former kraals. The largest average grain yields on degraded fields were obtained from combined application of N+P resulting in average grain yields of 800 and 1,171 kg ha−1 in Chelekura village and Onamudian village, respectively. These yield responses resulted in only 24 and 43% of yields obtained on former kraal fields in Chelekura and Onamudian, respectively. The physiological efficiencies, agronomic efficiencies, and apparent recoveries of N and P were low; often <25%. Pot experiments conducted in a greenhouse showed that Sulphur (S) and potassium (K) were additional limiting nutrients to N and P for finger millet production in Chelekura and Onamudian and may partly explain the large yield differences of finger millet between fertilized fields and former kraals in the smallholder farming systems. Nutrient management strategies for sustainable millet production in these farming systems need consideration of site-specific nutrient limitations

    Implications of livestock feeding management for soil fertility in smallholder mixed farming systems

    No full text
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN034007 / BLDSC - British Library Document Supply CentreGBUnited Kingdo
    corecore