767 research outputs found

    A Semi-automatic Search for Giant Radio Galaxy Candidates and their Radio-Optical Follow-up

    Full text link
    We present results of a search for giant radio galaxies (GRGs) with a projected largest linear size in excess of 1 Mpc. We designed a computational algorithm to identify contiguous emission regions, large and elongated enough to serve as GRG candidates, and applied it to the entire 1.4-GHz NRAO VLA Sky survey (NVSS). In a subsequent visual inspection of 1000 such regions we discovered 15 new GRGs, as well as many other candidate GRGs, some of them previously reported, for which no redshift was known. Our follow-up spectroscopy of 25 of the brighter hosts using two 2.1-m telescopes in Mexico, and four fainter hosts with the 10.4-m Gran Telescopio Canarias (GTC), yielded another 24 GRGs. We also obtained higher-resolution radio images with the Karl G. Jansky Very Large Array for GRG candidates with inconclusive radio structures in NVSS.Comment: 4 pages, 1 figure, to appear in the proceedings of The Universe of Digital Sky Surveys, Naples, Italy, Nov 25-28, 2014; Astrophysics and Space Science, eds. N.R. Napolitano et a

    Spectroscopy of the extended emission associated with two high-z quasars

    Get PDF
    Wetensch. publicatieFaculteit der Wiskunde en Natuurwetenschappe

    Biodiversity loss underlies the dilution effect of biodiversity

    Get PDF
    The dilution effect predicts increasing biodiversity to reduce the risk of infection, but the generality of this effect remains unresolved. Because biodiversity loss generates predictable changes in host community competence, we hypothesised that biodiversity loss might drive the dilution effect. We tested this hypothesis by reanalysing four previously published meta-analyses that came to contradictory conclusions regarding generality of the dilution effect. In the context of biodiversity loss, our analyses revealed a unifying pattern: dilution effects were inconsistently observed for natural biodiversity gradients, but were commonly observed for biodiversity gradients generated by disturbances causing losses of biodiversity. Incorporating biodiversity loss into tests of generality of the dilution effect further indicated that scale-dependency may strengthen the dilution effect only when biodiversity gradients are driven by biodiversity loss. Together, these results help to resolve one of the most contentious issues in disease ecology: the generality of the dilution effect.Non peer reviewe

    Spin polarons in triangular antiferromagnets

    Full text link
    The motion of a single hole in a 2D triangular antiferromagnet is investigated using the t-J model. The one-hole states are described by strings of spin deviations around the hole. Using projection technique the one-hole spectral function is calculated. For large J/t we find low-lying quasiparticle-like bands which are well separated from an incoherent background by a gap of order J. However, for small J/t this gap vanishes and the spectrum becomes broad over an energy range of several t. The results are compared with SCBA calculations and numerical data.Comment: 4 pages, 6 figs, to be publish in PR

    The mechanically induced structural disorder in barium hexaferrite, BaFe12O19, and its impact on magnetism

    Get PDF
    The response of the structure of the M-type barium hexaferrite (BaFe12O19) to mechanical action through high-energy milling and its impact on the magnetic behaviour of the ferrite are investigated. Due to the ability of the Fe-57 Mossbauer spectroscopic technique to probe the environment of the Fe nuclei, a valuable insight on a local atomic scale into the mechanically induced changes in the hexagonal structure of the material is obtained. It is revealed that the milling of BaFe12O19 results in the deformation of its constituent polyhedra (FeO6 octahedra, FeO4 tetrahedra and FeO5 triangular bi-pyramids) as well as in the mechanically triggered transition of the Fe3+ cations from the regular 12k octahedral sites into the interstitial positions provided by the magnetoplumbite structure. The response of the hexaferrite to the mechanical treatment is found to be accompanied by the formation of a non-uniform nanostructure consisting of an ordered crystallite surrounded/separated by a structurally disordered surface shell/interface region. The distorted polyhedra and the non-equilibrium cation distribution are found to be confined to the amorphous near-surface layers of the ferrite nanoparticles with the thickness extending up to about 2 nm. The information on the mechanically induced short-range structural disorder in BaFe12O19 is complemented by an investigation of its magnetic behaviour on a macroscopic scale. It is demonstrated that the milled ferrite nanoparticles exhibit a pure superparamagnetism at room temperature. As a consequence of the far-from-equilibrium structural disorder in the surface shell of the nanoparticles, the mechanically treated BaFe12O19 exhibits a reduced magnetization and an enhanced coercivity.DFG/SPP/1415APVV/0528-11VEGA/2/0097/1

    Primordial magnetic fields and the HI signal from the epoch of reionization

    Full text link
    The implication of primordial magnetic-field-induced structure formation for the HI signal from the epoch of reionization is studied. Using semi-analytic models, we compute both the density and ionization inhomogeneities in this scenario. We show that: (a) The global HI signal can only be seen in emission, unlike in the standard Λ\LambdaCDM models, (b) the density perturbations induced by primordial fields, leave distinctive signatures of the magnetic field Jeans' length on the HI two-point correlation function, (c) the length scale of ionization inhomogeneities is \la 1 \rm Mpc. We find that the peak expected signal (two-point correlation function) is 104K2\simeq 10^{-4} \rm K^2 in the range of scales 0.5-3Mpc0.5\hbox{-}3 \rm Mpc for magnetic field strength in the range 5×1010-3×109G5 \times 10^{-10} \hbox{-}3 \times 10^{-9} \rm G. We also discuss the detectability of the HI signal. The angular resolution of the on-going and planned radio interferometers allows one to probe only the largest magnetic field strengths that we consider. They have the sensitivity to detect the magnetic field-induced features. We show that thefuture SKA has both the angular resolution and the sensitivity to detect the magnetic field-induced signal in the entire range of magnetic field values we consider, in an integration time of one week.Comment: 19 pages, 5 figures, to appear in JCA

    Cosmological Magnetogenesis driven by Radiation Pressure

    Full text link
    The origin of large scale cosmological magnetic fields remains a mystery, despite the continuous efforts devoted to that problem. We present a new model of magnetic field generation, based on local charge separation provided by an anisotropic and inhomogeneous radiation pressure. In the cosmological context, the processes we explore take place at the epoch of the reionisation of the Universe. Under simple assumptions, we obtain results (i) in terms of the order of magnitude of the field generated at large scales and (ii) in terms of its power spectrum. The amplitudes obtained (B ~ 8.10^(-6) micro-Gauss) are considerably higher than those obtained in usual magnetogenesis models and provide suitable seeds for amplification by adiabatic collapse and/or dynamo during structure formation.Comment: 9 pages, 2 figure

    A new displacement-based approach to calculate stress intensity factors with the boundary element method

    Get PDF
    The analysis of cracked brittle mechanical components considering linear elastic fracture mechanics is usually reduced to the evaluation of stress intensity factors (SIFs). The SIF calculation can be carried out experimentally, theoretically or numerically. Each methodology has its own advantages but the use of numerical methods has be-come very popular. Several schemes for numerical SIF calculations have been developed, the J-integral method being one of the most widely used because of its energy-like formulation. Additionally, some variations of the J-integral method, such as displacement-based methods, are also becoming popular due to their simplicity. In this work, a simple displacement-based scheme is proposed to calculate SIFs, and its performance is compared with contour integrals. These schemes are all implemented with the Boundary Element Method (BEM) in order to exploit its advantages in crack growth modelling. Some simple examples are solved with the BEM and the calculated SIF values are compared against available solutions, showing good agreement between the different schemes

    Reionization: Characteristic Scales, Topology and Observability

    Full text link
    Recently the numerical simulations of the process of reionization of the universe at z>6 have made a qualitative leap forward, reaching sufficient sizes and dynamic range to determine the characteristic scales of this process. This allowed making the first realistic predictions for a variety of observational signatures. We discuss recent results from large-scale radiative transfer and structure formation simulations on the observability of high-redshift Ly-alpha sources. We also briefly discuss the dependence of the characteristic scales and topology of the ionized and neutral patches on the reionization parameters.Comment: 4 pages, 5 figures (4 in color), to appear in Astronomy and Space Science special issue "Space Astronomy: The UV window to the Universe", proceedings of 1st NUVA Conference ``Space Astronomy: The UV window to the Universe'' in El Escorial (Spain

    The Anatomy of a Magnetar: XMM Monitoring of the Transient Anomalous X-ray Pulsar XTE J1810-197

    Get PDF
    We present the latest results from a multi-epoch timing and spectral study of the Transient Anomalous X-ray Pulsar XTE J1810-197. We have acquired seven observations of this pulsar with the Newton X-ray Multi-mirror Mission (XMM-Newton) over the course of two and a half years, to follow the spectral evolution as the source fades from outburst. The spectrum is arguably best characterized by a two-temperature blackbody whose luminosities are decreasing exponentially with tau_1 = 870 days and tau_2 = 280 days, respectively. The temperatures of these components are currently cooling at a rate of 22% per year from a nearly constant value recorded at earlier epochs of kT_1 = 0.25 keV and kT_2 = 0.67 keV, respectively. The new data show that the temperature T_1 and luminosity of that component have nearly returned to their historic quiescent levels and that its pulsed fraction, which has steadily decreased with time, is now consistent with the previous lack of detected pulsations in quiescence. We also summarize the detections of radio emission from XTE J1810-197, the first confirmed for any AXP. We consider possible models for the emission geometry and mechanisms of XTE J1810-197.Comment: 8 pages, 7 figures, 1 table, latex. To appear in the proceedings of "Isolated Neutron Stars", Astrophysics & Space Science, in pres
    corecore