496 research outputs found
From respect to reburial: negotiating pagan interest in prehistoric human remains in Britain, through the Avebury consultation
The recent Avebury Consultation on reburial has drawn considerable public and professional attention to the issue of pagan calls for respect towards the care of human remains. Our work has pointed to the importance of archaeologists and others engaging seriously and respectfully with pagans as significant stakeholders in our heritage. The Avebury Reburial Consultation suggests this dialogue is increasing in strength, but we identify problems in the process. We focus here on approaches to the prehistoric dead and worldviews enabling communication from which calls or âclaimsâ for the reburial of prehistoric pagan human remains, versus their retention for scientific study, are articulated; frameworks for assessing and adjudicating such âclaimsâ; and implications for the interest groups concerned. We argue that room must be made for philosophical debate and the emotional and spiritual views of pagans, in order to improve dialogue, develop common ground, and enable participatory decision-making and situational pragmatism
Improved tensor-product expansions for the two-particle density matrix
We present a new density-matrix functional within the recently introduced
framework for tensor-product expansions of the two-particle density matrix. It
performs well both for the homogeneous electron gas as well as atoms. For the
homogeneous electron gas, it performs significantly better than all previous
density-matrix functionals, becoming very accurate for high densities and
outperforming Hartree-Fock at metallic valence electron densities. For isolated
atoms and ions, it is on a par with previous density-matrix functionals and
generalized gradient approximations to density-functional theory. We also
present analytic results for the correlation energy in the low density limit of
the free electron gas for a broad class of such functionals.Comment: 4 pages, 2 figure
Limiting Carleman weights and anisotropic inverse problems
In this article we consider the anisotropic Calderon problem and related
inverse problems. The approach is based on limiting Carleman weights,
introduced in Kenig-Sjoestrand-Uhlmann (Ann. of Math. 2007) in the Euclidean
case. We characterize those Riemannian manifolds which admit limiting Carleman
weights, and give a complex geometrical optics construction for a class of such
manifolds. This is used to prove uniqueness results for anisotropic inverse
problems, via the attenuated geodesic X-ray transform. Earlier results in
dimension were restricted to real-analytic metrics.Comment: 58 page
Ab initio atomistic thermodynamics and statistical mechanics of surface properties and functions
Previous and present "academic" research aiming at atomic scale understanding
is mainly concerned with the study of individual molecular processes possibly
underlying materials science applications. Appealing properties of an
individual process are then frequently discussed in terms of their direct
importance for the envisioned material function, or reciprocally, the function
of materials is somehow believed to be understandable by essentially one
prominent elementary process only. What is often overlooked in this approach is
that in macroscopic systems of technological relevance typically a large number
of distinct atomic scale processes take place. Which of them are decisive for
observable system properties and functions is then not only determined by the
detailed individual properties of each process alone, but in many, if not most
cases also the interplay of all processes, i.e. how they act together, plays a
crucial role. For a "predictive materials science modeling with microscopic
understanding", a description that treats the statistical interplay of a large
number of microscopically well-described elementary processes must therefore be
applied. Modern electronic structure theory methods such as DFT have become a
standard tool for the accurate description of individual molecular processes.
Here, we discuss the present status of emerging methodologies which attempt to
achieve a (hopefully seamless) match of DFT with concepts from statistical
mechanics or thermodynamics, in order to also address the interplay of the
various molecular processes. The new quality of, and the novel insights that
can be gained by, such techniques is illustrated by how they allow the
description of crystal surfaces in contact with realistic gas-phase
environments.Comment: 24 pages including 17 figures, related publications can be found at
http://www.fhi-berlin.mpg.de/th/paper.htm
Computational Physics on Graphics Processing Units
The use of graphics processing units for scientific computations is an
emerging strategy that can significantly speed up various different algorithms.
In this review, we discuss advances made in the field of computational physics,
focusing on classical molecular dynamics, and on quantum simulations for
electronic structure calculations using the density functional theory, wave
function techniques, and quantum field theory.Comment: Proceedings of the 11th International Conference, PARA 2012,
Helsinki, Finland, June 10-13, 201
- âŠ