12 research outputs found

    The common tetratricopeptide repeat acceptor site for steroid receptor- associated immunophilins and Hop is located in the dimerization domain of Hsp90

    Get PDF
    Structurally related tetratricopeptide repeat motifs in steroid receptor-associated immunophilins and the STI1 homolog, Hop, mediate the interaction with a common cellular target, hsp90. We have identified the binding domain in hsp90 for cyclophilin 40 (CyP40) using a two-hybrid system screen of a mouse cDNA library. All isolated clones encoded the intact carboxyl terminus of hsp90 and overlapped with a common region corresponding to amino acids 558-724 of murine hsp84. The interaction was confirmed in vitro with bacterially expressed CyP40 and deletion mutants of hsp90β and was delineated further to a 124-residue COOH-terminal segment of hsp90. Deletion of the conserved MEEVD sequence at the extreme carboxyl terminus of hsp90 precludes interaction with CyP40, signifying an important role for this motif in hsp90 function. We show that CyP40 and Hop display similar interaction profiles with hsp90 truncation mutants and present evidence for the direct competition of Hop and FK506-binding protein 52 with CyP40 for binding to the hsp90 COOH-terminal region. Our results are consistent with a common tetratricopeptide repeat interaction site for Hop and steroid receptor-associated immunophilins within a discrete COOH-terminal domain of hsp90. This region of hsp90 mediates ATP-independent chaperone activity, overlaps the hsp90 dimerization domain, and includes structural elements important for steroid receptor interaction

    Uptake of the food-derived heterocyclic amine carcinogen 2-amino-1-methyl-6-phenylimidazo[4,5-b]pyridine and its N-hydroxy metabolite into rat pancreatic acini and hepatocytes in vitro

    No full text
    Since DNA adducts of 2-amino-1-methyl-6-phenylimidazo[4, 5-b]pyridine (PhIP) are formed at relatively high levels in the rat pancreas but not liver, we examined the uptake of PhIP and its N-hydroxy metabolite (N-OH-PhIP) into pancreatic acini and hepatocytes to determine if differential tissue uptake was a factor modulating the formation of PhIP-DNA adducts. In addition, since the precursors of PhIP formation are two amino acids and since various amino acid transporters have been identified in the pancreas, the possible involvement of these transporters in the uptake of PhIP and N-OH-PhIP was investigated. The uptake of both heterocyclic compounds into both tissue preparations was rapid, with maximal uptake occurring within 1–2 min. However, PhIP uptake into pancreatic acini was significantly (2-way ANOVA, P < 0.05) greater than uptake of N-OH-PhIP into pancreatic acini and the uptake of both PhIP and N-OH-PhIP into hepatocytes. Although uptake wasrapid, efflux of both compounds from both tissue preparations was also rapid. However, the efflux rate constant (1.86 ± 0.6/min, mean ± SEM) for PhIP was significantly lower (Student's t-test, P < 0.05) than that for N-OH-PhIP (4.14 ± 0.04/min) from pancreatic acini. This,combined with the increased uptake of PhIP into pancreatic acini, suggests that there is substantial but reversible binding of PhIP in the pancreas. The uptake of both PhIP and N-OH-PhIP into pancreatic acini and hepatocytes was not affected by the presence of various amino acids in the incubation buffer, indicating that amino acid transporters are not involved in uptake of these compounds. Furthermore, uptake of both compounds did not appear to be dependent on metabolic energy supply. The above data, together with the high octanol: buffer partition coefficients (logP = 1.322 and 1.301 for PhIP and N-OH-PhIP respectively) suggest that both uptake and efflux of PhIP and N-OH-PhIP are consistent with a process of passive diffusion. The tissue binding characteristics for PhIP in the pancreas may create conditions whereby pancreatic cytochrome P450 1A1 can catalyse the formation of N-OH-PhIP While N-OH-PhIP is not the ultimate reactive DNA binding species, it has been shown to directly bind to and form DNA adducts. Therefore, it is possible that the apparent selective accumulation of PhIP may contribute to the high level of PhIP-DNA adducts formed in the rat pancreas

    Carbon and nitrogen nutrition of nodulated roots of grain legumes

    No full text
    corecore