965 research outputs found
A two-cocycle on the group of symplectic diffeomorphisms
We investigate a two-cocycle on the group of symplectic diffeomorphisms of an
exact symplectic manifolds defined by Ismagilov, Losik, and Michor and
investigate its properties. We provide both vanishing and non-vanishing results
and applications to foliated symplectic bundles and to Hamiltonian actions of
finitely generated groups.Comment: 16 pages, no figure
Simulations of Vortex Evolution and Phase Slip in Oscillatory Potential Flow of the Superfluid Component of Helium-4 Through an Aperture
The evolution of semicircular quantum vortex loops in oscillating potential
flow emerging from an aperture is simulated in some highly symmetrical cases.
As the frequency of potential flow oscillation increases, vortex loops that are
evolving so as eventually to cross all of the streamlines of potential flow are
drawn back toward the aperture when the flow reverses. As a result, the escape
size of the vortex loops, and hence the net energy transferred from potential
flow to vortex flow in such 2 Pi phase-slip events, decreases as the
oscillation frequency increases. Above some aperture-dependent and
flow-dependent threshold frequency, vortex loops are drawn back into the
aperture. Simulations are preformed using both radial potential flow and
oblate-spheroidal potential flow.Comment: 18 pages, 6 figures, sequel to cond-mat/050203
Genome-wide analyses of Liberibacter species provides insights into evolution, phylogenetic relationships, and virulence factors.
'Candidatus Liberibacter' species are insect-transmitted, phloem-limited α-Proteobacteria in the order of Rhizobiales. The citrus industry is facing significant challenges due to huanglongbing, associated with infection from 'Candidatus Liberibacter asiaticus' (Las). In order to gain greater insight into 'Ca. Liberibacter' biology and genetic diversity, we have performed genome sequencing and comparative analyses of diverse 'Ca. Liberibacter' species, including those that can infect citrus. Our phylogenetic analysis differentiates 'Ca. Liberibacter' species and Rhizobiales in separate clades and suggests stepwise evolution from a common ancestor splitting first into nonpathogenic Liberibacter crescens followed by diversification of pathogenic 'Ca. Liberibacter' species. Further analysis of Las genomes from different geographical locations revealed diversity among isolates from the United States. Our phylogenetic study also indicates multiple Las introduction events in California and spread of the pathogen from Florida to Texas. Texan Las isolates were closely related, while Florida and Asian isolates exhibited the most genetic variation. We have identified conserved Sec translocon (SEC)-dependent effectors likely involved in bacterial survival and virulence of Las and analysed their expression in their plant host (citrus) and insect vector (Diaphorina citri). Individual SEC-dependent effectors exhibited differential expression patterns between host and vector, indicating that Las uses its effector repertoire to differentially modulate diverse organisms. Collectively, this work provides insights into the evolution of 'Ca. Liberibacter' species, the introduction of Las in the United States and identifies promising Las targets for disease management
The Frequency Dependence of Critical-velocity Behavior in Oscillatory Flow of Superfluid Helium-4 Through a 2-micrometer by 2-micrometer Aperture in a Thin Foil
The critical-velocity behavior of oscillatory superfluid Helium-4 flow
through a 2-micrometer by 2-micrometer aperture in a 0.1-micrometer-thick foil
has been studied from 0.36 K to 2.10 K at frequencies from less than 50 Hz up
to above 1880 Hz. The pressure remained less than 0.5 bar. In early runs during
which the frequency remained below 400 Hz, the critical velocity was a
nearly-linearly decreasing function of increasing temperature throughout the
region of temperature studied. In runs at the lowest frequencies, isolated 2 Pi
phase slips could be observed at the onset of dissipation. In runs with
frequencies higher than 400 Hz, downward curvature was observed in the decrease
of critical velocity with increasing temperature. In addition, above 500 Hz an
alteration in supercritical behavior was seen at the lower temperatures,
involving the appearance of large energy-loss events. These irregular events
typically lasted a few tens of half-cycles of oscillation and could involve
hundreds of times more energy loss than would have occurred in a single
complete 2 Pi phase slip at maximum flow. The temperatures at which this
altered behavior was observed rose with frequency, from ~ 0.6 K and below, at
500 Hz, to ~ 1.0 K and below, at 1880 Hz.Comment: 35 pages, 13 figures, prequel to cond-mat/050203
The dynamics of vortex generation in superfluid 3He-B
A profound change occurs in the stability of quantized vortices in externally
applied flow of superfluid 3He-B at temperatures ~ 0.6 Tc, owing to the rapidly
decreasing damping in vortex motion with decreasing temperature. At low damping
an evolving vortex may become unstable and generate a new independent vortex
loop. This single-vortex instability is the generic precursor to turbulence. We
investigate the instability with non-invasive NMR measurements on a rotating
cylindrical sample in the intermediate temperature regime (0.3 - 0.6) Tc. From
comparisons with numerical calculations we interpret that the instability
occurs at the container wall, when the vortex end moves along the wall in
applied flow.Comment: revised & extended version. Journal of Low Temperature Physics,
accepted (2008
The Uncertainty in Newton's Constant and Precision Predictions of the Primordial Helium Abundance
The current uncertainty in Newton's constant, G_N, is of the order of 0.15%.
For values of the baryon to photon ratio consistent with both cosmic microwave
background observations and the primordial deuterium abundance, this
uncertainty in G_N corresponds to an uncertainty in the primordial 4He mass
fraction, Y_P, of +-1.3 x 10^{-4}. This uncertainty in Y_P is comparable to the
effect from the current uncertainty in the neutron lifetime, which is often
treated as the dominant uncertainty in calculations of Y_P. Recent measurements
of G_N seem to be converging within a smaller range; a reduction in the
estimated error on G_N by a factor of 10 would essentially eliminate it as a
source of uncertainty in the calculation of the primordial 4He abundance.Comment: 3 pages, no figures, fixed typos, to appear in Phys. Rev.
Novae Ejecta as Colliding Shells
Following on our initial absorption-line analysis of fifteen novae spectra we
present additional evidence for the existence of two distinct components of
novae ejecta having different origins. As argued in Paper I one component is
the rapidly expanding gas ejected from the outer layers of the white dwarf by
the outburst. The second component is pre-existing outer, more slowly expanding
circumbinary gas that represents ejecta from the secondary star or accretion
disk. We present measurements of the emission-line widths that show them to be
significantly narrower than the broad P Cygni profiles that immediately precede
them. The emission profiles of novae in the nebular phase are distinctly
rectangular, i.e., strongly suggestive of emission from a relatively thin,
roughly spherical shell. We thus interpret novae spectral evolution in terms of
the collision between the two components of ejecta, which converts the early
absorption spectrum to an emission-line spectrum within weeks of the outburst.
The narrow emission widths require the outer circumbinary gas to be much more
massive than the white dwarf ejecta, thereby slowing the latter's expansion
upon collision. The presence of a large reservoir of circumbinary gas at the
time of outburst is suggestive that novae outbursts may sometime be triggered
by collapse of gas onto the white dwarf, as occurs for dwarf novae, rather than
steady mass transfer through the inner Lagrangian point.Comment: 12 pages, 3 figures; Revised manuscript; Accepted for publication in
Astrophysics & Space Scienc
WKB approximation for inflationary cosmological perturbations
A new method for predicting inflationary cosmological perturbations, based on
the Wentzel-Kramers-Brillouin (WKB) approximation, is presented. A general
expression for the WKB scalar and tensor power spectra is derived. The main
advantage of the new scheme of approximation is that it is valid even if the
slow-roll conditions are violated. The method is applied to power-law
inflation, which allows a comparison with an exact result. It is demonstrated
that the WKB approximation predicts the spectral indices exactly and the
amplitude with an error lower than 10%, even in regimes far from
scale-invariance. The new method of approximation is also applied to a
situation where the slow-roll conditions hold. It is shown that the result
obtained bears close resemblance with the standard slow-roll calculation.
Finally, some possible improvements are briefly mentioned.Comment: 11 pages, 1 figure, RevTeX; minor changes, reference added (v2);
typos corrected (v3
First-principles study of the ferroelastic phase transition in CaCl_2
First-principles density-functional calculations within the local-density
approximation and the pseudopotential approach are used to study and
characterize the ferroelastic phase transition in calcium chloride (CaCl_2). In
accord with experiment, the energy map of CaCl_2 has the typical features of a
pseudoproper ferroelastic with an optical instability as ultimate origin of the
phase transition. This unstable optic mode is close to a pure rigid unit mode
of the framework of chlorine atoms and has a negative Gruneisen parameter. The
ab-initio ground state agrees fairly well with the experimental low temperature
structure extrapolated at 0K. The calculated energy map around the ground state
is interpreted as an extrapolated Landau free-energy and is successfully used
to explain some of the observed thermal properties. Higher-order anharmonic
couplings between the strain and the unstable optic mode, proposed in previous
literature as important terms to explain the soft-phonon temperature behavior,
are shown to be irrelevant for this purpose. The LAPW method is shown to
reproduce the plane-wave results in CaCl_2 within the precision of the
calculations, and is used to analyze the relative stability of different phases
in CaCl_2 and the chemically similar compound SrCl_2.Comment: 9 pages, 6 figures, uses RevTeX
- …