47 research outputs found

    The Kodaira dimension of the moduli of K3 surfaces

    Full text link
    The moduli space of polarised K3 surfaces of degree 2d is a quasi-projective variety of dimension 19. For general d very little has been known about the Kodaira dimension of these varieties. In this paper we present an almost complete solution to this problem. Our main result says that this moduli space is of general type for d>61 and for d=46,50,54,58,60.Comment: 47 page

    Borcherds symmetries in M-theory

    Get PDF
    It is well known but rather mysterious that root spaces of the EkE_k Lie groups appear in the second integral cohomology of regular, complex, compact, del Pezzo surfaces. The corresponding groups act on the scalar fields (0-forms) of toroidal compactifications of M theory. Their Borel subgroups are actually subgroups of supergroups of finite dimension over the Grassmann algebra of differential forms on spacetime that have been shown to preserve the self-duality equation obeyed by all bosonic form-fields of the theory. We show here that the corresponding duality superalgebras are nothing but Borcherds superalgebras truncated by the above choice of Grassmann coefficients. The full Borcherds' root lattices are the second integral cohomology of the del Pezzo surfaces. Our choice of simple roots uses the anti-canonical form and its known orthogonal complement. Another result is the determination of del Pezzo surfaces associated to other string and field theory models. Dimensional reduction on TkT^k corresponds to blow-up of kk points in general position with respect to each other. All theories of the Magic triangle that reduce to the EnE_n sigma model in three dimensions correspond to singular del Pezzo surfaces with A8nA_{8-n} (normal) singularity at a point. The case of type I and heterotic theories if one drops their gauge sector corresponds to non-normal (singular along a curve) del Pezzo's. We comment on previous encounters with Borcherds algebras at the end of the paper.Comment: 30 pages. Besides expository improvements, we exclude by hand real fermionic simple roots when they would naively aris

    The Tate conjecture for K3 surfaces over finite fields

    Full text link
    Artin's conjecture states that supersingular K3 surfaces over finite fields have Picard number 22. In this paper, we prove Artin's conjecture over fields of characteristic p>3. This implies Tate's conjecture for K3 surfaces over finite fields of characteristic p>3. Our results also yield the Tate conjecture for divisors on certain holomorphic symplectic varieties over finite fields, with some restrictions on the characteristic. As a consequence, we prove the Tate conjecture for cycles of codimension 2 on cubic fourfolds over finite fields of characteristic p>3.Comment: 20 pages, minor changes. Theorem 4 is stated in greater generality, but proofs don't change. Comments still welcom

    Operadic formulation of topological vertex algebras and Gerstenhaber or Batalin-Vilkovisky algebras

    Full text link
    We give the operadic formulation of (weak, strong) topological vertex algebras, which are variants of topological vertex operator algebras studied recently by Lian and Zuckerman. As an application, we obtain a conceptual and geometric construction of the Batalin-Vilkovisky algebraic structure (or the Gerstenhaber algebra structure) on the cohomology of a topological vertex algebra (or of a weak topological vertex algebra) by combining this operadic formulation with a theorem of Getzler (or of Cohen) which formulates Batalin-Vilkovisky algebras (or Gerstenhaber algebras) in terms of the homology of the framed little disk operad (or of the little disk operad).Comment: 42 page

    Counting BPS states on the Enriques Calabi-Yau

    Full text link
    We study topological string amplitudes for the FHSV model using various techniques. This model has a type II realization involving a Calabi-Yau threefold with Enriques fibres, which we call the Enriques Calabi-Yau. By applying heterotic/type IIA duality, we compute the topological amplitudes in the fibre to all genera. It turns out that there are two different ways to do the computation that lead to topological couplings with different BPS content. One of them leads to the standard D0-D2 counting amplitudes, and from the other one we obtain information about bound states of D0-D4-D2 branes on the Enriques fibre. We also study the model using mirror symmetry and the holomorphic anomaly equations. We verify in this way the heterotic results for the D0-D2 generating functional for low genera and find closed expressions for the topological amplitudes on the total space in terms of modular forms, and up to genus four. This model turns out to be much simpler than the generic B-model and might be exactly solvable.Comment: 62 pages, v3: some results at genus 3 corrected, more typos correcte

    Conformal Field Theories, Representations and Lattice Constructions

    Get PDF
    An account is given of the structure and representations of chiral bosonic meromorphic conformal field theories (CFT's), and, in particular, the conditions under which such a CFT may be extended by a representation to form a new theory. This general approach is illustrated by considering the untwisted and Z2Z_2-twisted theories, H(Λ)H(\Lambda) and H~(Λ)\tilde H(\Lambda) respectively, which may be constructed from a suitable even Euclidean lattice Λ\Lambda. Similarly, one may construct lattices ΛC\Lambda_C and Λ~C\tilde\Lambda_C by analogous constructions from a doubly-even binary code CC. In the case when CC is self-dual, the corresponding lattices are also. Similarly, H(Λ)H(\Lambda) and H~(Λ)\tilde H(\Lambda) are self-dual if and only if Λ\Lambda is. We show that H(ΛC)H(\Lambda_C) has a natural ``triality'' structure, which induces an isomorphism H(Λ~C)H~(ΛC)H(\tilde\Lambda_C)\equiv\tilde H(\Lambda_C) and also a triality structure on H~(Λ~C)\tilde H(\tilde\Lambda_C). For CC the Golay code, Λ~C\tilde\Lambda_C is the Leech lattice, and the triality on H~(Λ~C)\tilde H(\tilde\Lambda_C) is the symmetry which extends the natural action of (an extension of) Conway's group on this theory to the Monster, so setting triality and Frenkel, Lepowsky and Meurman's construction of the natural Monster module in a more general context. The results also serve to shed some light on the classification of self-dual CFT's. We find that of the 48 theories H(Λ)H(\Lambda) and H~(Λ)\tilde H(\Lambda) with central charge 24 that there are 39 distinct ones, and further that all 9 coincidences are accounted for by the isomorphism detailed above, induced by the existence of a doubly-even self-dual binary code.Comment: 65 page

    The structure of parafermion vertex operator algebras

    Get PDF
    It is proved that the parafermion vertex operator algebra associated to the irreducible highest weight module for the affine Kac-Moody algebra A_1^{(1)} of level k coincides with a certain W-algebra. In particular, a set of generators for the parafermion vertex operator algebra is determined.Comment: 12 page

    Genus Two Partition and Correlation Functions for Fermionic Vertex Operator Superalgebras I

    Full text link
    We define the partition and nn-point correlation functions for a vertex operator superalgebra on a genus two Riemann surface formed by sewing two tori together. For the free fermion vertex operator superalgebra we obtain a closed formula for the genus two continuous orbifold partition function in terms of an infinite dimensional determinant with entries arising from torus Szeg\"o kernels. We prove that the partition function is holomorphic in the sewing parameters on a given suitable domain and describe its modular properties. Using the bosonized formalism, a new genus two Jacobi product identity is described for the Riemann theta series. We compute and discuss the modular properties of the generating function for all nn-point functions in terms of a genus two Szeg\"o kernel determinant. We also show that the Virasoro vector one point function satisfies a genus two Ward identity.Comment: A number of typos have been corrected, 39 pages. To appear in Commun. Math. Phy

    Black Hole Entropy Associated with Supersymmetric Sigma Model

    Full text link
    By means of an identity that equates elliptic genus partition function of a supersymmetric sigma model on the NN-fold symmetric product SNXS^N X of XX (SNX=XN/SNS^N X=X^N/S_N, SNS_N is the symmetric group of NN elements) to the partition function of a second quantized string theory, we derive the asymptotic expansion of the partition function as well as the asymptotic for the degeneracy of spectrum in string theory. The asymptotic expansion for the state counting reproduces the logarithmic correction to the black hole entropy.Comment: 11 pages, no figures, version to appear in the Phys. Rev. D (2003
    corecore