18 research outputs found

    Atom focusing by far-detuned and resonant standing wave fields: Thin lens regime

    Get PDF
    The focusing of atoms interacting with both far-detuned and resonant standing wave fields in the thin lens regime is considered. The thin lens approximation is discussed quantitatively from a quantum perspective. Exact quantum expressions for the Fourier components of the density (that include all spherical aberration) are used to study the focusing numerically. The following lens parameters and density profiles are calculated as functions of the pulsed field area θ\theta : the position of the focal plane, peak atomic density, atomic density pattern at the focus, focal spot size, depth of focus, and background density. The lens parameters are compared to asymptotic, analytical results derived from a scalar diffraction theory for which spherical aberration is small but non-negligible (θ≫1\theta \gg 1). Within the diffraction theory analytical expressions show that the focused atoms in the far detuned case have an approximately constant background density 0.5(1−0.635θ−1/2)0.5(1-0.635\theta ^{- 1/2}) while the peak density behaves as % 3.83\theta ^{1/2}, the focal distance or time as θ−1(1+1.27θ−1/2)\theta ^{-1}(1+1.27\theta ^{- 1/2}), the focal spot size as 0.744θ−3/40.744\theta ^{-3/4}, and the depth of focus as 1.91θ−3/21.91\theta ^{- 3/2}. Focusing by the resonant standing wave field leads to a new effect, a Rabi- like oscillation of the atom density. For the far-detuned lens, chromatic aberration is studied with the exact Fourier results. Similarly, the degradation of the focus that results from angular divergence in beams or thermal velocity distributions in traps is studied quantitatively with the exact Fourier method and understood analytically using the asymptotic results. Overall, we show that strong thin lens focusing is possible with modest laser powers and with currently achievable atomic beam characteristics.Comment: 21 pages, 11 figure

    Finite size effects and metastability in zero-range condensation

    Get PDF
    We study zero-range processes which are known to exhibit a condensation transition, where above a critical density a non-zero fraction of all particles accumulates on a single lattice site. This phenomenon has been a subject of recent research interest and is well understood in the thermodynamic limit. The system shows large finite size effects, and we observe a switching between metastable fluid and condensed phases close to the critical point, in contrast to the continuous limiting behaviour of relevant observables. We describe the leading order finite size effects and establish a discontinuity near criticality in a rigorous scaling limit. We also characterise the metastable phases using a current matching argument and an extension of the fluid phase to supercritical densities. This constitutes an interesting example where the thermodynamic limit fails to capture essential parts of the dynamics, which are particularly relevant in applications with moderate system sizes such as traffic flow or granular clustering
    corecore